81
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of highly self-dual-doped O, P carbon nanosheets derived from banana stem fiber for high-performance supercapacitor electrode

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 9217-9230 | Received 01 Jun 2023, Accepted 29 Jun 2023, Published online: 09 Jul 2023

References

  • Açıkalın, K. 2021. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresource Technology 337 (May):125438. doi:10.1016/j.biortech.2021.125438.
  • Apriwandi, A., E. Taer, R. Farma, R. N. Setiadi, and E. Amiruddin. 2021. A facile approach of micro-mesopores structure binder-free coin/monolith solid design activated carbon for electrode supercapacitor. Journal of Energy Storage 40 (June):102823. doi:10.1016/j.est.2021.102823.
  • Awitdrus, A., D. A. Yusra, E. Taer, A. Agustino, A. Apriwandi, R. Farma, and R. Taslim. 2022. Biomass conversion into activated carbon as a sustainable energy material for the development of supercapacitor devices. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (2):3349–59. doi:10.1080/15567036.2022.2064941.
  • Chen, H., M. Li, C. Li, X. Li, Y. Wu, X. Chen, J. Wu, X. Li, and Y. Chen. 2022. Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives. Chinese Chemical Letters 33 (1):141–52. doi:10.1016/j.cclet.2021.08.097.
  • Choi, H. Y., B. Lee, and Y. G. Jeong. 2023. Microstructures and electrochemical characterization of graphene oxide/carboxymethylated cellulose nanofibril-derived hybrid carbon aerogels for freestanding supercapacitor electrodes. International Journal of Electrochemical Science 18 (5):100101. doi:10.1016/j.ijoes.2023.100101.
  • Dong, Y., W. Wang, W. Wang, D. Ma, S. Ma, C. Wang, D. Wang, and G. Shi. 2023. Synthesis of activated carbon nanofibers by bio-enzymatic method as electrode material for supercapacitors. International Journal of Electrochemical Science 18 (3):100024. doi:10.1016/j.ijoes.2023.01.024.
  • Fang, H., D. Li, M. Zhao, Y. Zhang, J. Yang, and K. Wang. 2022. Research progress and prospect of hybrid supercapacitors as boosting the performance. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–18. doi:10.1080/15567036.2022.2033887.
  • Farma, R., A. Putri, E. Taer, A. Awitdrus, and A. A. 2021. Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor. Journal of Materials Science: Materials in Electronics 32 (6):7681–91. doi:10.1007/s10854-021-05486-5.
  • Fu, H., X. Zhang, J. Fu, G. Shen, Y. Ding, Z. Chen, and H. Du. 2020. Single layers of MoS 2/Graphene nanosheets embedded in activated carbon nano fi bers for high-performance supercapacitor. Journal of Alloys and Compounds 829:154557. doi:10.1016/j.jallcom.2020.154557.
  • Kigozi, M., G. N. Kasozi, S. Balaso Mohite, S. Zamisa, R. Karpoormath, J. B. Kirabira, and E. Tebandeke. 2023. Non-emission hydrothermal low-temperature synthesis of carbon nanomaterials from poly (ethylene terephthalate) plastic waste for excellent supercapacitor applications. Green Chemistry Letters and Reviews 16 (1). doi: 10.1080/17518253.2023.2173025.
  • Kumar, M., S. K. Shukla, S. N. Upadhyay, and P. K. Mishra. 2020. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Bioresource Technology 310 (April):123393. doi:10.1016/j.biortech.2020.123393.
  • Lesbayev, B., M. Auyelkhankyzy, G. Ustayeva, M. Yeleuov, N. Rakhymzhan, A. Maltay, and Y. Maral. 2023. Recent advances: Biomass-derived porous carbon materials. South African Journal of Chemical Engineering 43 (August 2022):327–36. doi:10.1016/j.sajce.2022.11.012.
  • Liu, H., X. Huang, M. Zhou, J. Gu, M. Xu, L. Jiang, M. Zheng, S. Li, and Z. Miao. 2023. Efficient conversion of biomass waste to N/O co-doped hierarchical porous carbon for high performance supercapacitors. Journal of Analytical and Applied Pyrolysis 169 (August 2022):105844. doi:10.1016/j.jaap.2022.105844.
  • Li, X., J. Zhang, B. Liu, and Z. Su. 2021. A critical review on the application and recent developments of post-modified biochar in supercapacitors. Journal of Cleaner Production 310: Elsevier Ltd. doi:10.1016/j.jclepro.2021.127428.
  • Malhotra, J. S., R. Valiollahi, and H. Wiinikka. 2023. From wood to supercapacitor electrode material via fast pyrolysis. Journal of Energy Storage 57 (November 2022):106179. doi:10.1016/j.est.2022.106179.
  • Mangisetti, S. R., M. Kamaraj, and R. Sundara. 2021. Large-scale single-step synthesis of wrinkled N–S doped 3D graphene like nanosheets from Tender palm shoots for high energy density supercapacitors. International Journal of Hydrogen Energy 46 (1):403–15. doi:10.1016/j.ijhydene.2020.09.161.
  • Misran, E., O. Bani, E. M. Situmeang, and A. S. Purba. 2022. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alexandria Engineering Journal 61 (3):1946–55. doi:10.1016/j.aej.2021.07.022.
  • Musyoka, N. M., B. K. Mutuma, and N. Manyala. 2020. Onion-derived activated carbons with enhanced surface area for improved hydrogen storage and electrochemical energy application. RSC Advances 10 (45):26928–36. doi:10.1039/D0RA04556J.
  • Priya, D. S., L. J. Kennedy, and G. T. Anand. 2023. Effective conversion of waste banana bract into porous carbon electrode for supercapacitor energy storage applications. Results in Surfaces and Interfaces 10 (August 2022):100096. doi:10.1016/j.rsurfi.2023.100096.
  • Shaku, B., T. P. Mofokeng, N. J. Coville, K. I. Ozoemena, and M. S. Maubane-Nkadimeng. 2023. Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors. Electrochimica Acta 442 (January):141828. doi:10.1016/j.electacta.2023.141828.
  • Shang, Z., X. An, L. Liu, J. Yang, W. Zhang, H. Dai, H. Cao, Q. Xu, H. Liu, and Y. Ni. 2021. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydrate Polymers 251 (29):117107. doi:10.1016/j.carbpol.2020.117107.
  • Shanmuga Priya, M., P. Divya, and R. Rajalakshmi. 2020. A review status on characterization and electrochemical behaviour of biomass derived carbon materials for energy storage supercapacitors. Sustainable Chemistry and Pharmacy 16 (March):100243. doi:10.1016/j.scp.2020.100243.
  • Taer, E., D. Afdal Yusra, A. Amri, T. R. Awitdrus, A. Apriwandi, A. Putri, and A. Putri. 2020. The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Materials Today: Proceedings 44:3346–49. doi:10.1016/j.matpr.2020.11.645.
  • Taer, E., A. Apriwandi, S. Chow, and R. Taslim. 2023. Integrated pyrolysis approach of self-O-doped hierarchical porous carbon volumetric performance. Diamond and Related Materials 135:109866. doi:10.1016/j.diamond.2023.109866.
  • Taer, E., A. Apriwandi, W. Windasari, R. Taslim, and M. Deraman. 2023. Novel laurel aromatic evergreen biomass derived hierarchical porous carbon nanosheet as sustainable electrode for high performance symmetric supercapacitor. Journal of Energy Storage 67:107567. doi:10.1016/j.est.2023.107567.
  • Taer, E., N. Y. Effendi, R. Taslim, and A. Apriwandi. 2022. Interconnected micro-mesoporous carbon nanofiber derived from lemongrass for high symmetric supercapacitor performance. Journal of Materials Research and Technology 19:4721–32. doi:10.1016/j.jmrt.2022.06.167.
  • Taer, E., N. Syamsunar, A. Apriwandi, and R. Taslim. 2023. Novel Solanum torvum fruit biomass-derived hierarchical porous carbon nanosphere as excellent electrode material for enhanced symmetric supercapacitor performance. Jom. doi:10.1007/s11837-023-05801-x.
  • Taer, E., N. Yanti, J. A. Putri, A. Apriwandi, and R. Taslim. 2022 November. Novel macaroni-sponge-like pore structure biomass (Zingiber officinale Rosc. leaves)-based electrode material for excellent energy gravimetric supercapacitor. Journal of Chemical Technology and Biotechnology 98 (4):990–1002. doi:10.1002/jctb.7303.
  • Vinayagam, M., R. Suresh Babu, A. Sivasamy, and A. L. Ferreira de Barros. 2020. Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass and Bioenergy 143 (October):105838. doi:10.1016/j.biombioe.2020.105838.
  • Wang, Y., Y. Lu, Z. Hu, J. Sun, G. Xiao, H. Zhao, J. Zhu, and Z. Liu. 2023. Electrochemistry communications facile preparation of Zr @ carbon electrodes based on polyimide/UiO-66 composites for supercapacitors. Electrochemistry Communications 148 (February):107449. doi:10.1016/j.elecom.2023.107449.
  • Wang, H., H. Niu, H. Wang, W. Wang, X. Jin, H. Wang, H. Zhou, and T. Lin. 2021. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. Journal of Power Sources 482 (September 2020):228986. doi:10.1016/j.jpowsour.2020.228986.
  • Wang, W., D. Yang, Z. Huang, H. Hu, L. Wang, and K. Wang. 2022. Electrodeless nanogenerator for dust recover. Energy Technology 10 (12):2200699. doi:10.1002/ente.202200699.
  • Xuan, X., M. Wang, W. You, S. Manickam, Y. Tao, J. Y. Yoon, and X. Sun. 2023. Hydrodynamic cavitation-assisted preparation of porous carbon from garlic peels for supercapacitors. Ultrasonics Sonochemistry 94 (December 2022):106333. doi:10.1016/j.ultsonch.2023.106333.
  • Yaglikci, S., Y. Gokce, E. Yagmur, and Z. Aktas. 2020. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea. Environmental Technology (United Kingdom) 41 (1):36–48. doi:10.1080/09593330.2019.1575480.
  • Yang, X., Y. Zheng, C. He, Y. Qiu, W. Hou, B. Lu, Y. Chen, B. Huang, J. Lv, and G. Lin. 2023. Preparation of biomass-based N, P, and S co-doped porous carbon with high mesoporosity based on the synergistic effect of NaOH/thiourea and melamine phosphate and its application in high performance supercapacitors. Journal of Analytical and Applied Pyrolysis 169 (July 2022):105822. doi:10.1016/j.jaap.2022.105822.
  • Yan, C., S. Jia, J. Wei, J. Guan, and Z. Shao. 2023. Efficient dual conductive network based on layered double hydroxide nanospheres and nanosheets anchored in N-carbon nanofibers for asymmetric supercapacitors. Journal of Alloys and Compounds 930:167332. doi:10.1016/j.jallcom.2022.167332.
  • Ye, R., J. Cai, Y. Pan, X. Qiao, and W. Sun. 2020. Microporous carbon from malva nut for supercapacitors: Effects of primary carbonizations on structures and performances. Diamond and Related Materials 105 (December 2019). doi:10.1016/j.diamond.2020.107816.
  • Yetri, Y., A. T. Hoang, M. Mursida, D. Dahlan, M. Muldarisnur, E. Taer, and M. Q. Chau (2020). Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–15. doi: 10.1080/15567036.2020.1811433
  • Zhang, M., W. Wang, G. Xia, L. Wang, and K. Wang. 2023. Self-powered electronic skin for remote human–machine synchronization. ACS Applied Electronic Materials 5 (1):498–508. doi:10.1021/acsaelm.2c01476.
  • Zhang, C., B. Yuan, Y. Liang, L. Yang, L. Bai, H. Yang, D. Wei, F. Wang, Q. Wang, W. Wang, et al. 2021. Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification. Materials Chemistry and Physics 258 (October 2020):123998. doi:10.1016/j.matchemphys.2020.123998.
  • Zhou, Q., and H. Yao. 2022. Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Reports 8:656–61. doi:10.1016/j.egyr.2022.09.167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.