46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the economic and technical efficacy of grid-connected photovoltaic systems through a combination of mathematical and deep learning models with experimental validation: A case study

Pages 9246-9265 | Received 13 Apr 2023, Accepted 29 Jun 2023, Published online: 10 Jul 2023

References

  • Abdul-Wahab, S., Y. Charabi, A. M. Al-Mahruqi, I. Osman, and S. Osman. 2019. Selection of the best solar photovoltaic (PV) for Oman. Solar Energy 188 (July):1156–68. doi:10.1016/j.solener.2019.07.018.
  • Al-Badi, A. H. 2018. Measured performance evaluation of a 1.4 kW grid connected desert type PV in Oman. Energy for Sustainable Development 47:107–13. doi:10.1016/j.esd.2018.09.007.
  • Al-Badi, A. H., M. AL-Toobi, S. AL-Harthy, Z. Al-Hosni, and A. AL-Harthy. 2012. Hybrid systems for decentralized power generation in Oman. International Journal of Sustainable Energy 31 (6):411–21. doi:10.1080/14786451.2011.590898.
  • Al-Badi, A. H., and H. Bourdoucen. 2012. Feasibility analysis of renewable hybrid energy supply options for Masirah Island. International Journal of Sustainable Engineering 5 (3):244–51. doi:10.1080/19397038.2011.610009.
  • Al-Ismaily, H. A., and D. Probert. 1998. Photovoltaic electricity prospects in Oman. Applied Energy 59 (2–3):97–124. doi:10.1016/S0306-2619(98)00007-5.
  • Al Lawati, H. 2022. Politically connected firms and forward-looking disclosure in the Era of Oman Vision 2040. Journal of Risk and Financial Management 15 (6):233. doi:10.3390/jrfm15060233.
  • Al-Maamary, H. M. S., H. A. Kazem, and M. T. Chaichan. 2017a. Climate change: The game changer in the gulf cooperation council region. Renewable and Sustainable Energy Reviews 76:555–576. doi:10.1016/j.rser.2017.03.048.
  • Al-Maamary, H. M. S., H. A. Kazem, and M. T. Chaichan. 2017b, January. The impact of oil price fluctuations on common renewable energies in GCC countries. ( 2016) Renewable and Sustainable Energy Reviews 75:989–1007. doi: 10.1016/j.rser.2016.11.079.
  • Almarshoud, A. F. 2017. Technical and economic performance of 1MW Grid-connected PV system in Saudi Arabia. International Journal of Engineering Research and Applications 7 (04):09–17. doi:10.9790/9622-0704010917.
  • Al-Saqlawi, J., K. Madani, and N. Mac Dowell. 2018. Techno-economic feasibility of grid-independent residential roof-top solar PV systems in Muscat, Oman. Energy Conversion and Management 178 (August):322–34. doi:10.1016/j.enconman.2018.10.021.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews 77:109–130. doi:10.1016/j.rser.2017.03.126.
  • Al-Waeli, A. H. A., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2018. Nanofluid based grid connected PV/T systems in Malaysia: A techno-economical assessment. Sustainable Energy Technologies and Assessments 28 (June):81–95. doi:10.1016/j.seta.2018.06.017.
  • Assi, A. H., M. H. Al-Shamisi, H. A. N. Hejase, and A. Haddad (2013). Prediction of global solar radiation in UAE using artificial neural networks. Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA 2013 October, 196–200. 10.1109/ICRERA.2013.6749750
  • Bamisile, O., A. Oluwasanmi, S. Obiora, E. Osei-Mensah, G. Asoronye, and Q. Huang. 2020. Application of deep learning for solar irradiance and solar photovoltaic multi-parameter forecast. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–21. doi:10.1080/15567036.2020.1801903.
  • Behrang, M. A., E. Assareh, A. Ghanbarzadeh, and A. R. Noghrehabadi. 2010. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 84 (8):1468–80. doi:10.1016/j.solener.2010.05.009.
  • Bloomberg New Energy Finance. (2019). Solar Photovoltaic Parity. https://about.bnef.com/blog/solar-photovoltaic-parity/
  • Bouzguenda, M. 2012. A comparative study of hybrid diesel solar PVewind power systems in rural areas in the Sultanate of Oman. International Journal of Sustainable Energy 31 (2):95e106. 95e1(October 2012). doi:10.1080/1478646X.2010.545407.
  • Çelik, Ö., A. Tan, M. Inci, and A. Teke. 2020. Improvement of energy harvesting capability in grid-connected photovoltaic micro-inverters. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 00(00):1–25. doi:10.1080/15567036.2020.1755389.
  • du Plessis, A. A., J. M. Strauss, and A. J. Rix. 2021. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. Applied Energy 285 (January):116395. doi:10.1016/j.apenergy.2020.116395.
  • Elizabeth Michael, N., M. Mishra, S. Hasan, and A. Al-Durra. 2022. Short-term solar power predicting model based on multi-step cnn stacked lstM Technique. Energies 15 (6):2150. doi:10.3390/en15062150.
  • Gorjian, S., H. Sharon, H. Ebadi, K. Kant, F. B. Scavo, and G. M. Tina. 2021. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. Journal of Cleaner Production 278:124285. doi:10.1016/j.jclepro.2020.124285.
  • Gruslys, A., R. Munos, I. Danihelka, M. Lanctot, and A. Graves. 2016. Memory-efficient backpropagation through time. Advances in Neural Information Processing Systems Nips 29: 4132–40.
  • Kazem, H. A. 2011. Renewable energy in Oman: Status and future prospects. Renewable and Sustainable Energy Reviews 15 (8):3465–69. doi:10.1016/j.rser.2011.05.015.
  • Kazem, H. A. 2016. Teaching photovoltaic principles at the university. Photovoltaics for Sustainable Electricity and Buildings. doi:10.1007/978-3-319-39280-6_6.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and A. Gholami. 2022. A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol. 44, 6709–36. 3. Taylor and Francis Ltd. doi: 10.1080/15567036.2022.2100517.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020a. Evaluation of aging and performance of grid-connected photovoltaic system northern Oman: Seven years’ experimental study. Solar Energy 207 (April):1247–58. doi:10.1016/j.solener.2020.07.061.
  • Kazem, H. A., M. T. Chaichan, A. H. A. Al-Waeli, and K. Sopian. 2020b. A novel model and experimental validation of dust impact on grid-connected photovoltaic system performance in Northern Oman. Solar Energy 206 (May):564–78. doi:10.1016/j.solener.2020.06.043.
  • Kazem, H. A., and T. Khatib. 2013. A novel numerical algorithm for optimal sizing of a photovoltaic/wind/diesel generator/battery microgrid using loss of load probability index. International Journal of Photoenergy 2013:1–8. doi:10.1155/2013/718596.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61:108–15. doi:10.1016/j.enbuild.2013.02.011.
  • Kazem, H. A., and J. H. Yousif. 2017. Comparison of prediction methods of photovoltaic power system production using a measured dataset. Energy Conversion and Management 148:1070–1081. doi:10.1016/j.enconman.2017.06.058.
  • Kazem, H. A., J. Yousif, M. T. Chaichan, and A. H. A. Al-Waeli. 2019. Experimental and deep learning artificial neural network approach for evaluating grid-connected photovoltaic systems. International Journal of Energy Research 43 (14):8572–91. doi:10.1002/er.4855.
  • Khatib, T., K. Sopian, and H. A. H. A. Kazem. 2013. Actual performance and characteristic of a grid connected photovoltaic power system in the tropics: A short term evaluation. Energy Conversion and Management 71:115–19. doi:10.1016/j.enconman.2013.03.030.
  • Krarti, M., and K. Dubey. 2017. Energy productivity evaluation of large scale building energy efficiency programs for Oman. Sustainable Cities and Society 29:12–22. doi:10.1016/j.scs.2016.11.009.
  • Lai, C. S., and M. D. Mcculloch. 2017. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy 190:191–203. doi:10.1016/j.apenergy.2016.12.153.
  • Liu, Z., Y. Zhang, X. Yuan, Y. Liu, J. Xu, S. Zhang, and B. J. He. 2021. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. Journal of Cleaner Production 307 (April):127240. doi:10.1016/j.jclepro.2021.127240.
  • Luo, X., D. Zhang, and X. Zhu. 2021. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy 225:120240. doi:10.1016/j.energy.2021.120240.
  • Mellit, A., A. M. Pavan, and V. Lughi. 2021. Deep learning neural networks for short-term photovoltaic power forecasting. Renewable Energy 172:276–88. doi:10.1016/j.renene.2021.02.166.
  • Mikolov, T., A. Joulin, S. Chopra, M. Mathieu, and M. ’. Ranzato (2015). Learning longer memory in recurrent neural networks. 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings, California, United States. 1–9.
  • Peacock, J., G. Huang, J. Song, and C. N. Markides. 2022. Techno-economic assessment of integrated spectral-beam-splitting photovoltaic-thermal (PV-T) and organic Rankine cycle (ORC) systems. Energy Conversion and Management 269 (May):116071. doi:10.1016/j.enconman.2022.116071.
  • Rahimikhoob, A. 2010. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renewable Energy 35 (9):2131–35. doi:10.1016/j.renene.2010.01.029.
  • Rodríguez-Ossorio, J. R., A. González-Martínez, M. de Simón-Martín, A. M. Diez-Suárez, A. Colmenar-Santos, and E. Rosales-Asensio. 2021. Levelized cost of electricity for the deployment of solar photovoltaic plants: The region of León (Spain) as case study. Energy Reports 7:199–203. doi:10.1016/j.egyr.2021.06.034.
  • Ruiz, L. G. B., M. I. Capel, and M. C. Pegalajar. 2019. Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem. Applied Soft Computing Journal 76:356–68. doi:10.1016/j.asoc.2018.12.028.
  • Saberian, A., H. Hizam, M. A. M. Radzi, M. Z. A. Ab Kadir, and M. Mirzaei. 2014. Modelling and prediction of photovoltaic power output using artificial neural networks. International Journal of Photoenergy 2014:1–10. 2014. doi:10.1155/2014/469701.
  • Sathe, T. M., and A. S. Dhoble. 2017. A review on recent advancements in photovoltaic thermal techniques. Renewable and Sustainable Energy Reviews 76 (February):645–72. doi:10.1016/j.rser.2017.03.075.
  • Shahsavar, A., H. Moayedi, A. H. A. Al-Waeli, K. Sopian, and P. Chelvanathan. 2020. Machine learning predictive models for optimal design of building-integrated photovoltaic-thermal collectors. International Journal of Energy Research 44 (7):5675–95. doi:10.1002/er.5323.
  • Son, J., Y. Park, J. Lee, and H. Kim. 2018. Sensorless PV power forecasting in grid-connected buildings through deep learning. Sensors (Switzerland) 18 (8):1–27. doi:10.3390/s18082529.
  • U.S. Department of Energy. (2019). Residential Photovoltaic Systems Cost Benchmark: Q1 2019. https://www.nrel.gov/docs/fy19osti/71585.pdf
  • Vaziri Rad, M. A., A. Toopshekan, P. Rahdan, A. Kasaeian, and O. Mahian. 2020. A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations. Renewable and Sustainable Energy Reviews 129 (April):109923. doi:10.1016/j.rser.2020.109923.
  • Veeramanikandan, M., T. Arjunan, N. Gunasekar, and R. Raja. 2022. Design optimization and experimental evaluation of novel photovoltaic modules in comparison with a conventional photovoltaic module. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44 (4):8627–43. doi:10.1080/15567036.2022.2123870.
  • Wang, X., W. Chong, K. Wong, S. Lai, L. Saw, X. Xiang, and C.-T. Wang. 2019. Preliminary Techno–Environment–Economic evaluation of an innovative hybrid renewable energy harvester system for residential application. Energies 12 (8):1496. doi:10.3390/en12081496.
  • Wang, X., L. Kurdgelashvili, J. Byrne, and A. Barnett. 2011. The value of module efficiency in lowering the levelized cost of energy of photovoltaic systems. Renewable and Sustainable Energy Reviews 15 (9):4248–54. doi:10.1016/j.rser.2011.07.125.
  • Wu, W., W. Liao, J. Miao, and G. Du. 2019. Using gated recurrent unit network to forecast short-term load considering impact of electricity price. Energy Procedia 158:3369–74. doi:10.1016/j.egypro.2019.01.950.
  • Yildiz, C., and H. Acikgoz. 2021. A kernel extreme learning machine-based neural network to forecast very short-term power output of an on-grid photovoltaic power plant. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 43 (4):395–412. doi:10.1080/15567036.2020.1801899.
  • Yousif, J. H., and H. A. Kazem. 2021. Prediction and evaluation of photovoltaic-thermal energy systems production using artificial neural network and experimental dataset. Case Studies in Thermal Engineering 27 (July):101297. doi:10.1016/j.csite.2021.101297.
  • Yousif, J. H. J. H., H. A. H. A. Kazem, and J. Boland. 2017. Predictive models for photovoltaic electricity production in hot weather conditions. Energies 10 (7):971. doi:10.3390/en10070971.
  • Zhang, C., Z. Li, H. Jiang, Y. Luo, and S. Xu. 2021. Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China. Applied Energy 283 (October):116329. doi:10.1016/j.apenergy.2020.116329.
  • Zhong, T., Z. Zhang, M. Chen, K. Zhang, Z. Zhou, R. Zhu, Y. Wang, G. Lü, and J. Yan. 2021. A city-scale estimation of rooftop solar photovoltaic potential based on deep learning. Applied Energy 298 (June):117132. doi:10.1016/j.apenergy.2021.117132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.