114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of bleed air on performance of small turbojet engine used in unmanned aerial vehicle

ORCID Icon
Pages 9231-9245 | Received 17 Jan 2023, Accepted 28 Jun 2023, Published online: 10 Jul 2023

References

  • Akdeniz, H. Y., O. Balli, and H. Caliskan. 2022. Energy, exergy, economic, environmental, energy based economic, exergoeconomic and enviroeconomic (7E) analyses of a jet fueled turbofan type of aircraft engine. Fuel 322:322. doi:10.1016/j.fuel.2022.124165.
  • ATAG. 2022. Dataworldbank. Accessed September 7, 2022. https://data.worldbank.org/indicator/IS.AIR.PSGR
  • Aydın, H., O. Turan, T. H. Karakoc, and A. Midilli. 2013. Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy 58:550–60. doi:10.1016/j.energy.2013.04.076.
  • Aygun, H. 2022. Investigation of effects of several design parameters on exergo-sustainability metrics for twin-spool turbojet engine at different flight conditions. International Journal of Exergy 37 (2):200–13. doi:10.1504/IJEX.2022.120572.
  • Aygun, H., M. Kirmizi, and O. Turan. 2022. Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine. Energy 249:123759. doi:10.1016/j.energy.2022.123759.
  • Aygun, H., M. R. Sheikhi, and M. Kirmizi. 2022. Parametric study on exergy and NOx metrics of turbofan engine under different design variables. Journal of Energy Resources Technology-Transactions of the Asme 144 (6). doi:10.1115/1.4052034.
  • Aygun, H., and O. Turan. 2019. Entropy, energy and exergy for measuring PW4000 turbofan sustainability. International Journal of Turbo & Jet-Engines 1 (4):397–409. doi:10.1515/tjj-2018-0050.
  • Aygun, H., and O. Turan. 2020. Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes. Energy 195:117008. doi:10.1016/j.energy.2020.117008.
  • Aygun, H., and O. Turan. 2021. Entropy, energy and exergy for measuring PW4000 turbofan sustainability. International Journal of Turbo & Jet-Engines 38 (4):397–409. doi:10.1515/tjj-2018-0050.
  • Balli, O., and H. Caliskan. 2021. Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy 232:121031. doi:10.1016/j.energy.2021.121031.
  • Balli, O., and H. Caliskan. 2022. Energy, exergy, environmental and sustainability assessments of jet and hydrogen fueled military turbojet engine. International Journal of Hydrogen Energy 47 (62):26728–45. doi:10.1016/j.ijhydene.2022.04.180.
  • Bejan, A., G. Tsatsaronis, and M. J. Moran. 1995. Thermal design and optimization. USA: John Wiley & Sons.
  • Ekici, S., Y. Sohret, K. Coban, O. Altuntas, and T. H. Karakoc. 2017. Performance evaluation of an experimental turbojet engine. International Journal of Turbo & Jet-Engines. 365–75. doi:10.1515/tjj-2016-0016.
  • El-Sayed, A. F., (2017). Aircraft propulsions and gas turbine engines. CRC Press.Forecast. Accessed September 7, 2022. https://www.forecastinternational.com/samples/F655_CompleteSample.pdf.
  • Forecast. 2010. Accessed September 7, 2022. https://www.forecastinternational.com/samples/F655_CompleteSample.pdf
  • Liu, X., D. Zhao, D. Guan, S. Becker, D. Sun, and X. Sun. 2022. Development and progress in aeroacoustic noise reduction on turbofan aeroengines. Progress in Aerospace Sciences 130:100796. doi:10.1016/j.paerosci.2021.100796.
  • Manigandan, S., A. Atabani, V. K. Ponnusamy, A. Pugazhendhi, P. Gunasekar, and S. Prakash. 2020. Effect of hydrogen and multiwall carbon nanotubes blends on combustion performance and emission of diesel engine using Taguchi approach. Fuel 276:118120. doi:10.1016/j.fuel.2020.118120.
  • Mattingly, J. D. 2006. Elements of propulsion: Gas turbines and rockets. American Institute of Aeronautics and Astronautics. doi:10.2514/4.861789.
  • Turan, O. 2012. Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy 46 (1):51–61. doi:10.1016/j.energy.2012.03.030.
  • Yucer, C. T. 2016. Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method. Energy 111:251–59. doi:10.1016/j.energy.2016.05.108.
  • Yuksel, B., O. Balli, H. Gunerhan, and A. Hepbasli. 2020. Comparative performance metric assessment of a military turbojet engine utilizing hydrogen and kerosene fuels through advanced exergy analysis method. Energies 13 (5):1205. doi:10.3390/en13051205.
  • Zaporozhets, O., V. Tokarev, and K. Attenborough. 2011. Aircraft noise: Assessment, prediction and control. CRC Press.
  • Zaporozhets, O., V. Volodymyr, and K. Synylo. 2020. Trends on current and forecasted aircraft hybrid electric architectures and their impact on environment. Energy 211:118814. doi:10.1016/j.energy.2020.118814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.