155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy and exergy study of a novel multi-mode solar dryer without and with sensible heat storage for Garcinia pedunculata

, &
Pages 9266-9282 | Received 08 Mar 2023, Accepted 05 Jul 2023, Published online: 10 Jul 2023

References

  • Atalay, H. 2019. Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy 172:1037–52. doi:10.1016/j.energy.2019.02.023.
  • Atalay, H., and E. Cankurtaran. 2021. Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium. Energy 216:119221. doi:10.1016/j.energy.2020.119221.
  • Ayyappan, S., K. Mayilsamy, and V. V. Sreenarayanan. 2015. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat and Mass Transfer 52 (3):459–67. doi:10.1007/s00231-015-1568-5.
  • Benli, H. 2013. Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy 50:58–67. doi:10.1016/j.renene.2012.06.022.
  • Bhardwaj, A. K., R. Kumar, S. Kumar, B. Goel, and R. Chauhan. 2021. Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM. Sustainable Energy Technologies and Assessments 45 (February):101119. doi:10.1016/j.seta.2021.101119.
  • Celma, A. R., and F. Cuadros. 2009. Energy and exergy analyses of OMW solar drying process. Renewable Energy 34 (3):660–66. doi:10.1016/j.renene.2008.05.019.
  • Cengel, Y. A., and M. A. Boles. 2007. Thermodynamics: an engineering approach 6th edition (SI Units). New York: The McGraw-Hill Companies, Inc.
  • Cetina-Quiñones, A. J., M. Arıcı, L. Cisneros-Villalobos, and A. Bassam. 2023. Digital twin model and global sensitivity analysis of an indirect type solar dryer with sensible heat storage material: an approach from exergy sustainability indicators under tropical climate conditions. Journal of Energy Storage 58 (August 2022). doi:10.1016/j.est.2022.106368.
  • Chauhan, P. S., A. Kumar, and C. Nuntadusit. 2018. Thermo-environomical and drying kinetics of bitter gourd flakes drying under North Wall insulated greenhouse dryer. Solar Energy 162 (April 2017):205–16. doi:10.1016/j.solener.2018.01.023.
  • Chowdhury, M. M. I., B. K. Bala, and M. A. Haque. 2011. Energy and exergy analysis of the solar drying of Jackfruit Leather. Biosystems Engineering 110 (2):222–29. doi:10.1016/j.biosystemseng.2011.08.011.
  • da Silva, G. M., A. G. Ferreira, R. M. Coutinho, and C. B. Maia. 2021. Energy and exergy analysis of the drying of corn grains. Renewable Energy 163:1942–50. doi:10.1016/j.renene.2020.10.116.
  • Dhaundiyal, A., G. H. Gebremichael, and D. Atsu. 2021. Comprehensive analysis of a solar dryer with a natural draught. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (2):3563–83. doi:10.1080/15567036.2021.1951899.
  • Dutta, P. P., and D. C. Baruah. 2014. Drying modelling and experimentation of assam black tea (Camellia Sinensis) with producer gas as a fuel. Applied Thermal Engineering 63 (2):495–502. doi:10.1016/j.applthermaleng.2013.11.035.
  • Dutta, P., P. P. Dutta, and P. Kalita. 2021. Thermal performance studies for drying of garcinia pedunculata in a free convection corrugated type of solar dryer. Renewable Energy 163:599–612. doi:10.1016/j.renene.2020.08.118.
  • Dutta, P., P. P., Dutta, and P., Kalita. 2023. Thermal performance study of a PV ‑ driven innovative solar dryer with and without sensible heat storage for drying of garcinia pedunculata. Environmental Science and Pollution Researchno. 0123456789. 10.1007/s11356-023-27041-x.
  • Dutta, P., P. P. Dutta, P. Kalita, P. Goswami, and P. K. Choudhury. 2021. Energy analysis of a mixed-mode corrugated aluminium alloy (AlMn1cu) plate solar air heater. Materials Today: Proceedings 47:3352–3357. doi:10.1016/j.matpr.2021.07.156.
  • Dutta, P. P., and A. Kumar. 2017. Development and performance study of solar air heater for solar drying applications. In Solar drying technology. Green energy and technology, 579–601. Singapore: Springer Singapore. 10.1007/978-981-10-3833-421.
  • Ekka, J. P., and D. Kumar. 2023. A review of industrial food processing using solar dryers with heat storage systems. Journal of Stored Products Research 101 (January):102090. doi:10.1016/j.jspr.2023.102090.
  • El Hage, H., A. Herez, M. Ramadan, H. Bazzi, and M. Khaled. 2018. An investigation on solar drying: a review with economic and environmental assessment. Energy 157:815–29. doi:10.1016/j.energy.2018.05.197.
  • Erick César, L. V., C. M. Ana Lilia, G. V. Octavio, P. F. Isaac, and B. O. Rogelio. 2020. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum Lycopersicum). Renewable Energy 147:845–55. doi:10.1016/j.renene.2019.09.018.
  • Erick César, L.-V., C.-M. Ana Lilia, G.-V. Octavio, S. S. Orlando, and D. N. Alfredo. 2021. Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus Communis L). Energy 220:119740. doi:10.1016/j.energy.2020.119740.
  • Hadibi, T., A. Boubekri, D. Mennouche, A. Benhamza, and N. Abdenouri. 2021. 3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer. Renewable Energy 170:1052–69. doi:10.1016/j.renene.2021.02.029.
  • Lingayat, A., V. P. Chandramohan, and V. R. K. Raju. 2019. Energy and exergy analysis on drying of banana using indirect type natural convection solar dryer energy and exergy analysis on drying of banana using indirect type natural convection solar dryer. Heat Transfer Engineering 1–11. doi:10.1080/01457632.2018.1546804.
  • Midilli, A., and H. Kucuk. 2003. Energy and exergy analyses of solar drying process of pistachio. Energy 28 (6):539–56. doi:10.1016/S0360-5442(02)00158-5.
  • Mugi, V. R., and V. P. Chandramohan. 2020. Energy end exergy analysis of forced and natural convection indirect solar dryers: estimation of exergy inflow, outflow, losses, exergy efficiencies and sustainability indicators from drying experiments. Journal of Cleaner Production Journal 282:124421. doi:10.1016/j.jclepro.2020.124421.
  • Mugi, V. R., and V. P. Chandramohan. 2022. Energy, exergy, economic and environmental (4E) analysis of passive and active-modes indirect type solar dryers while drying guava slices. Sustainable Energy Technologies and Assessments 52 (August 1):102250. https://linkinghub.elsevier.com/retrieve/pii/S2213138822003022.
  • Mugi, V. R., M. C. Gilago, and V. P. Chandramohan. 2023. Performance Analysis and Drying Kinetics of Beetroot Slices Dried in an Innovative Solar Dryer without and with Thermal Storage Unit. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):1900–17. doi:10.1080/15567036.2023.2184002.
  • Murugavelh, S., B. Anand, K. Midhun Prasad, R. Nagarajan, and S. Azariah Pravin Kumar. 2019. Exergy analysis and kinetic study of tomato waste drying in a mixed mode solar tunnel dryer. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects (00):1–17. doi:10.1080/15567036.2019.1679289.
  • Rabha, D. K., P. Muthukumar, and C. Somayaji. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renewable Energy 105:764–73. doi:10.1016/j.renene.2017.01.007.
  • Sharma, A., and P. P. Dutta. 2021. Exergy analysis of a solar thermal energy powered tea withering trough. Materials Today: Proceedings 47 (xxxx):3123–28. doi:10.1016/j.matpr.2021.06.181.
  • Sharma, A., and P. P. Dutta. 2022. Energy, exergy, economic and environmental (4E) assessments of a tea withering trough coupled with a solar air heater having an absorber plate with Al-can protrusions. International Journal of Ambient Energy 43 (1):8438–50. doi:10.1080/01430750.2022.2097950.
  • Singh, P., and M. K. Gaur. 2020. Review on development, recent advancement and applications of various types of solar dryers. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects (00):1–21. doi:10.1080/15567036.2020.1806951.
  • Singh, D., and P. Mall. 2020. Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 1–18. doi:10.1080/15567036.2020.1810825.
  • Srivastava, A., A. Anand, A. Shukla, A. Kumar, D. Buddhi, and A. Sharma. 2021. A comprehensive overview on solar grapes drying: modeling, energy, environmental and economic analysis. Sustainable Energy Technologies and Assessments 47 (July):101513. doi:10.1016/j.seta.2021.101513.
  • Vijayan, S., T. V. Arjunan, and A. Kumar. 2016. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science and Emerging Technologies 36:59–67. doi:10.1016/j.ifset.2016.05.014.
  • Vijayan, S., T. V. Arjunan, and A. Kumar. 2020. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renewable Energy 146:2210–23. doi:10.1016/j.renene.2019.08.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.