160
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Supercritical water oxidation: a breakthrough approach for remediation TNT-contaminated pink water

ORCID Icon
Pages 9283-9296 | Received 22 May 2023, Accepted 07 Jul 2023, Published online: 11 Jul 2023

References

  • Ahmad, K., H. R. Ghatak, and S. M. Ahuja. 2020. A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: a sustainable approach. Environmental Technology & Innovation 19:100893. doi:10.1016/J.ETI.2020.100893.
  • Barreto-Rodrigues, M., F. T. Silva, and T. C. B. Paiva. 2009. Characterization of wastewater from the Brazilian TNT industry. Journal of Hazardous Materials 164 (1):385–88. doi:10.1016/J.JHAZMAT.2008.07.152.
  • Bhanot, P., S. M. Celin, T. R. Sreekrishnan, A. Kalsi, S. K. Sahai, and P. Sharma. 2020. Application of integrated treatment strategies for explosive industry wastewater—A critical review. Journal of Water Process Engineering 35:101232. doi:10.1016/J.JWPE.2020.101232.
  • Bui, D. N., and T. T. Minh. 2021. Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes. Science of the Total Environment 756:143852. doi:10.1016/J.SCITOTENV.2020.143852.
  • Chang, S. J., and Y. C. Liu. 2007. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation. Journal of Environmental Sciences 19 (12):1430–35. doi:10.1016/S1001-0742(07)60233-2.
  • Chen, W. S., W. C. Chiang, and C. C. Lai. 2007. Recovery of nitrotoluenes in wastewater by solvent extraction. Journal of Hazardous Materials 145 (1–2):23–29. doi:10.1016/J.JHAZMAT.2006.10.072.
  • Cheng, G., Y. Li, Y. Cao, and Z. Zhang. 2023. A novel method for the desulfurization of medium–high sulfur coking coal. Fuel 335:126988. doi:10.1016/J.FUEL.2022.126988.
  • Croiset, E., S. F. Rice, and R. G. Hanush. 1997. Hydrogen peroxide decomposition in supercritical water. AIChE Journal 43 (9):2343–52. doi:10.1002/AIC.690430919.
  • Cui, B., F. Cui, G. Jing, S. Xu, W. Huo, and S. Liu. 2009. Oxidation of oily sludge in supercritical water. Journal of Hazardous Materials 165 (1–3):511–17. doi:10.1016/J.JHAZMAT.2008.10.008.
  • de Souza, G. B. M., M. B. Pereira, L. C. Mourão, M. P. dos Santos, J. A. de Oliveira, I. A. A. Garde, C. G. Alonso, V. Jegatheesan, and L. Cardozo-Filho. 2022. Supercritical water technology: an emerging treatment process for contaminated wastewaters and sludge. Reviews in Environmental Science and Bio/technology 21 (1):75–104. doi:10.1007/S11157-021-09601-0.
  • Fawcett-Hirst, W., T. J. Temple, M. K. Ladyman, and F. Coulon. 2021. A review of treatment methods for insensitive high explosive contaminated wastewater. Heliyon 7 (7):e07438. doi:10.1016/J.HELIYON.2021.E07438.
  • Federation, W. E. 2017. Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. Public Health 51 (1):940–940. doi:10.2105/AJPH.51.6.940-a.
  • Gong, Y., Y. Guo, S. Wang, and W. Song. 2016. Supercritical water oxidation of quinazoline: effects of conversion parameters and reaction mechanism. Water Research 100:116–25. doi:10.1016/J.WATRES.2016.05.001.
  • Gurbulak, E., E. Yuksel, M. Tekbas, T. Doruk, M. Eyvaz, and N. Bektas. 2019. Supercritical water oxidation of octol – containing wastewater. Global NEST Journal 21 (2):172–79. doi:10.30955/gnj.002776.
  • Jiang, Z., Y. Li, S. Wang, C. Cui, C. Yang, and J. Li. 2020. Review on mechanisms and kinetics for supercritical water oxidation processes. Applied Sciences 10 (14):4937. doi:10.3390/APP10144937.
  • Kikuchi, Y., K. Kurata, J. Nakatani, M. Hirao, and Y. Oshima. 2011. Analysis of supercritical water oxidation for detoxification of waste organic solvent in university based on life cycle assessment. Journal of Hazardous Materials 194:283–89. doi:10.1016/J.JHAZMAT.2011.07.107.
  • Klemick, H., C. C. Moore, S. C. Newbold, and P. J. Walsh. 2012. US Environmental Protection Agency valuation of surface water quality improvements. Journals.Uchicago.Edu 6 (1):130–46. doi:10.1093/reep/rer025.
  • Li, Y., G. Cheng, M. Zhang, Y. Cao, and E. Von Lau. 2022. Advances in depressants used for pyrite flotation separation from coal/minerals. The International Journal of Coal Science & Technology 9 (1):1–20. doi:10.1007/s40789-022-00526-9.
  • Li, Y., and S. Wang. 2019. Advanced supercritical fluids technologies. Intechopen. https://books.google.com.tr/books?hl=en&lr=&id=gkv9DwAAQBAJ&oi=fnd&pg=PA131&ots=RCc22xFVzz&sig=bpnyQfL_yQdL1A260Yp976eApGk&redir_esc=y#v=onepage&q&f=false.
  • Li, J., S. Wang, Y. Li, Z. Jiang, T. Xu, and Y. Zhang. 2020. Supercritical water oxidation and process enhancement of nitrogen-containing organics and ammonia. Water Research 185:116222. doi:10.1016/J.WATRES.2020.116222.
  • Ludwichk, R., O. K. Helferich, C. P. Kist, A. C. Lopes, T. Cavasotto, D. C. Silva, and M. Barreto-Rodrigues. 2015. Characterization and photocatalytic treatability of red water from Brazilian TNT industry. Journal of Hazardous Materials 293:81–86. doi:10.1016/J.JHAZMAT.2015.03.017.
  • Mdlovu, N. V., K. S. Lin, M. J. Hsien, C. J. Chang, and S. C. Kunene. 2020. Synthesis, characterization, and application of zero-valent iron nanoparticles for TNT, RDX, and HMX explosives decontamination in wastewater. Journal of the Taiwan Institute of Chemical Engineers 114:186–98. doi:10.1016/J.JTICE.2020.08.036.
  • Modell, M. 1980. Modell: reforming of organic-substances in supercritical… - Google Scholar. Journal of the Electrochemical. https://scholar.google.com/scholar_lookup?title=Reforming%20of%20organic-substances%20in%20supercritical%20water&publication_year=1980&author=M.%20Modell.
  • Moore, H., C. C. Klemick, S. C. Newbold, P. J. Walsh, S. Newbold, D. Simpson, P. Walsh, and W. Wheeler. 2012. US environmental protection agency valuation of surface water quality improvements. Journals Uchicago Education 6 (1):130–46. doi:10.1093/reep/rer025.
  • Norouzi, M., H. Sharifnezhad, and S. G. Hosseini. 2019. Preparation and modification of polyethersulphone MF/UF membrane by TiO2 nanoparticles for pre-treatment of Pink water. International journal of environmental analytical chemistry 100 (2):175–88. doi:10.1080/03067319.2019.1634700.
  • Pervukhin, V. V., and D. G. Sheven. 2022. Photolysis by UVA-visible light and thermal degradation of TNT in aqueous solutions according to aerodynamic thermal breakup droplet ionization mass spectrometry. Journal of Photochemistry and Photobiology A: Chemistry 432:114079. doi:10.1016/J.JPHOTOCHEM.2022.114079.
  • Segond, N., Y. Matsumura, and K. Yamamoto. 2002. Determination of ammonia oxidation rate in sub- and supercritical water. Industrial and Engineering Chemistry Research 41 (24):6020–27. doi:10.1021/ie0106682.
  • Thakur, S., A. Kumar, and S. N. Reddy. 2019. Hydrothermal treatment of pharmaceutical wastewater. 61 (4):415–23. doi:10.1080/00194506.2019.1608869.
  • Top, S., M. Akgün, E. Kıpçak, and M. S. Bilgili. 2020. Treatment of hospital wastewater by supercritical water oxidation process. Water Research 185:116279. doi:10.1016/J.WATRES.2020.116279.
  • Vadillo, V., J. Sánchez-Oneto, J. R. Portela, and E. J. Martínez De La Ossa. 2013. Problems in supercritical water oxidation process and proposed solutions. Industrial and Engineering Chemistry Research 52 (23):7617–29. doi:10.1021/ie400156c.
  • Wang, S., Y. Guo, L. Wang, Y. Wang, D. Xu, and H. Ma. 2011. Supercritical water oxidation of coal: Investigation of operating parameters’ effects, reaction kinetics and mechanism. Fuel Processing Technology 92 (3):291–97. doi:10.1016/J.FUPROC.2010.09.010.
  • Wang, K., R. Jin, Y. Qiao, Z. He, X. Wang, C. Wang, and Y. Lu. 2020. 2,4,6-Triamino-1,3,5-Trinitrobenzene Explosive Wastewater Treatment by Hydrodynamic Cavitation Combined with Chlorine Dioxide. Propellants, Explosives, Pyrotechnics 45 (8):1243–49. doi:10.1002/PREP.201900356.
  • Wei, N., D. Xu, B. Hao, S. Guo, Y. Guo, and S. Wang. 2021. Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Research 190:116634. doi:10.1016/J.WATRES.2020.116634.
  • Xu, W., Q. Zhao, and Z. Ye. 2022. In Situ Remediation of TNT Red Water Contaminated Soil: Field Demonstration. Soil & Sediment Contamination. doi:10.1080/15320383.2022.2157376.
  • Zhang, J., J. Gu, Y. Han, W. Li, Z. Gan, and J. Gu. 2015. Supercritical water oxidation vs supercritical water gasification: Which process is better for explosive wastewater treatment?. Industrial and Engineering Chemistry Research 54 (4):1251–60. doi:10.1021/ie5043903.
  • Zhang, J., S. Wang, Y. Guo, D. Xu, Y. Gong, and X. Tang. 2013. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition. Journal of Environmental Sciences 25 (8):1583–91. doi:10.1016/S1001-0742(9)60193-4.
  • Zhang, M., Q. Zhao, and Z. Ye. 2011. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke. Journal of Environmental Sciences 23 (12):1962–69. doi:10.1016/S1001-0742(10)60619-5.
  • Zhao, Q., Z. Ye, and M. Zhang. 2010. Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere 80 (8):947–50. doi:10.1016/J.CHEMOSPHERE.2010.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.