96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on sub-to-supercritical transition of diesel: Gas–liquid interface properties

ORCID Icon, , ORCID Icon, &
Pages 9359-9382 | Received 26 Jan 2023, Accepted 21 Jun 2023, Published online: 21 Jul 2023

References

  • Alireza, R. 2016. Effect of inlet temperature and equivalence ratio on HCCI engine performance fuelled with ethanol: Numerical investigation. Journal of Central South University 23 (1):122–29. doi:10.1007/s11771-016-3055-7.
  • Chehroudi, B. 2012. Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications. International Journal of Aerospace Engineering 2012. doi:10.1155/2012/121802.
  • Chen-Yang, F., S. Chong-Lin, L. Gang-Wei, J. Wei, X. Zhang, Y. Qiao, and Y. Liu. 2019. Impact of post-injection strategy on the physicochemical properties and reactivity of diesel in-cylinder soot. Proceedings of the Combustion Institute 37:4821–29. doi:10.1016/j.proci.2018.08.001.
  • Consolini, L., S. K. Ag Ga Rwal, and S. Murad. 2003. A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer 46 (17):3179–88. doi:10.1016/S0017-9310(03)00101-7.
  • Crua, C., J. Manin, L. M. Pickett. August 2015. Transition from droplet evaporation to miscible mixing at diesel engine conditions. 13th Triennial International Conference on Liquid Atomization and Spray Systems. In Taiwan: ICLASS.
  • Dahms, R. N., J. Manin, and L. M. Pickett. 2013. Understanding high-pressure gas-liquid interface phenomena in Diesel engines. Proceedings of the Combustion Institute 34 (1):1667–75. doi:10.1016/j.proci.2012.06.169.
  • Deng Lei, X. M.-Z. 2016. Molecular dynamics simulation of liquid-vapor interface in sub/supercritical surroundings. Journal of Engineering Thermophysics 37 (8):1802–07. in Chinese.
  • Gong, Y., L. K. H, X. Ma, S. Shuai, and H. Xu. 2021. Atomic-level insights into transition mechanism of dominant mixing modes of multi-component fuel droplets: From evaporation to diffusion. Fuel 304 (3):121464. doi:10.1016/j.fuel.2021.121464.
  • Gong, Y., X. Ma, K. Luo, et al. 2022b. A molecular dynamics study of evaporation of multicomponent stationary and moving fuel droplets in multicomponent ambient gases under supercritical conditions. Energy 258:124838. doi:10.1016/j.energy.2022.124838.
  • Gong, Y., X. Ma, K. Luo, Xu, H., and Shuai, S. 2022a. A molecular dynamics study of evaporation mode transition of hydrocarbon fuels under supercritical conditions. Combustion and Flame 246:112397. doi:10.1016/j.combustflame.2022.112397.
  • Gong, Y., G. Xiao, X. Ma, K. H. Luo, S. Shuai, and H. Xu. 2020. Phase transitions of multi-component fuel droplets under sub- and supercritical conditions. Fuel 287 (2):119516. doi:10.1016/j.fuel.2020.119516.
  • Gui-Yuan, M., and L. Qiao. 2017. A molecular dynamics investigation of n-alkanes vaporizing into nitrogen: Transition from subcritical to supercritical. Combustion and Flame 176:60–71. doi:10.1016/j.combustflame.2016.09.028.
  • Guo-Wei, X., and L. Kai-Hong. 2017. Molecular dynamics simulations of the evaporation process of a fuel droplet under supercritical environment. Journal of Engineering Thermophysics 38 (012):2745–51.
  • Guo-Wei, X., L. Kai-Hong, M. Xiao, and S. Shi-Jin. 2018. A molecular dynamics study of fuel droplet evaporation in sub-and-supercritical conditions. Proceedings of the Combustion Institute 37 (3):3219–27. doi:10.1016/j.proci.2018.09.020.
  • Guo-Wei, X., L. Kai Hong, M. Xiao, and S. Shuai. 2018. Liquid fuel evaporation under supercritical conditions. Communications in Computational Physics 23 (4). doi:10.4208/cicp.OA-2016-0252.
  • He, R., P. YI, and T. LI . 2020. Evaporation and condensation characteristics of n-heptane and multi-component diesel droplets under typical spray relevant conditions. International Journal of Heat and Mass Transfer 163:120162. doi:10.1016/j.ijheatmasstransfer.2020.120162.
  • Kaltz, T. L., L. N. Long, M.-M. Micci, and J. K. Little. 1998. Supercritical vaporization of liquid oxygen droplets using molecular dynamics. Combustion Science and Technology 136 (1):279–301. doi:10.1080/00102209808924174.
  • Law, C. K. 1982. Recent advances in droplet vaporization and combustion. Progress in Energy & Combustion Science 8 (3):171–201. doi:10.1016/0360-1285(82)90011-9.
  • Long, L. N., M. M. Micci, and B. C. Wong. 1996. Molecular dynamics simulations of droplet evaporation. Computer Physics Communications 96 (2–3):167–72. doi:10.1016/0010-4655(96)00050-1.
  • Manin, J., M. Bardi, L. M. Picket, R. N. Dahms, and J. C. Oefelein. 2014. Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel 134 (oct.15):531–43. doi:10.1016/j.fuel.2014.05.060.
  • Mao-Zhao, X. I. E. 2014. Mechanism and modeling of transcritical/supercritical fuel spray and mixture formation in internal combustion engines. Journal of Combustion Science and Technology 20 (1):1–9.
  • Mayer, W., A. Schik, B. Vielle, C. Chauveau, I. Gokalp, D. G. Talley, and R. D. Woodward. 1998. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. Journal of Propulsion and Power 14 (5):835–835. doi:10.2514/2.5348.
  • Meunier, M. 2005. Diffusion coefficients of small gas molecules in amorphous cis-1,4-polybutadiene estimated by molecular dynamics simulations. The Journal of Chemical Physics 123 (13):134906. doi:10.1063/1.2049274.
  • Minbo, C. 2009. Computer chemistry: From theoretical chemistry to molecular simulation. Beijing: Science Press.
  • Nose, S., and M. L. Klein. 1983. A study of solid and liquid carbon tetrafluoride using the constant pressure molecular dynamics technique. The Journal of Chemical Physics 78 (11):6928–39. doi:10.1063/1.444641.
  • Peng, H., L. Yun-Qing, and L. Zhao. 2011. Evaporation of liquid fuel droplet at supercritical conditions. Science China Technological Sciences 2 (2):369–74.(in. Chinese. doi:10.1007/s11431-010-4231-x.
  • Poling, B. E., J. M. Prausnitz, and J. P. O’Connell. 2001. The properties of gases and liquids[M], in America. New York: McGraw-Hill.
  • Rachedi, R. R., L. C. Crook, and P. E. Sojka. 2010. An experimental study of swirling supercritical hydrocarbon fuel jets. Journal of Engineering for Gas Turbines & Power 132 (8):081502. doi:10.1115/1.3124668.
  • Ruitian, H., Y. Ping, L. Tie, Yan, Z., and Run, C. 2022. Phase transition of n-heptane/ethanol blends from subcritical to supercritical conditions. International Journal of Heat and Mass Transfer 0017–9310. doi:10.1016/j.ijheatmasstransfer.2021.122405.
  • Segal, C., and S. A. Polikhov. 2008. Subcritical to supercritical mixing. Physics of Fluids 20 (5):4. doi:10.1063/1.2912055.
  • Soper, A. K. 2000. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chemical Physics 258 (2–3):121–37. doi:10.1016/S0301-0104(00)00179-8.
  • Sumardiono, S., and J. Fischer. 2006. Molecular simulations of droplet evaporation processes: Adiabatic pressure jump evaporation. International Journal of Heat and Mass Transfer 49 (5/6):1148–61. doi:10.1016/j.ijheatmasstransfer.2005.06.043.
  • Vg, A., B. Sba, C. Fjfa, H. Mandler, B. Weigand, and G. Lamanna. 2021. Fluid injection with supercritical reservoir conditions: Overview on morphology and mixing. The Journal of Supercritical Fluids 169:105097. doi:10.1016/j.supflu.2020.105097.
  • Wang, Z., L. Zhou, G. Shu, and Wei, H. 2021. Droplet evaporation and phase transition modes in supercritical environment by molecular dynamic simulation. Physics of Fluids. 33(6):062001–062001. doi:10.1063/5.0053328.
  • Yi-Jie, W. 2018. Mixing process of the fuel droplet near nozzle under high temperature and high pressure conditions[C]. ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago.
  • Yi-Jie, W., L. Tie, Z. Xin-Yi, and Z. Zhi-Fei. 2020. Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique. Fuel 268:117343. doi:10.1016/j.fuel.2020.117343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.