195
Views
1
CrossRef citations to date
0
Altmetric
Review Article

An approach to recovering heat from the compressed air system based on waste heat recovery: a review

ORCID Icon & ORCID Icon
Pages 9465-9484 | Received 17 Jan 2023, Accepted 15 Jul 2023, Published online: 25 Jul 2023

References

  • Agathokleous, R., G. Bianchi, G.Panayiotou, L. Arestia, M. C. Argyrou, G. S. Georgiou, S. A. Tassou, H. Jouhara, S. A. Kalogirou, G. A. Florides, et al. 2019. Waste heat recovery in the EU industry and proposed new technologies, 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2018, Paphos, Cyprus. 161:489–496. doi:10.1016/j.egypro.2019.02.064.
  • Agbo, C. C., Q. H. Mahmoud, and J. M. Eklund. 2019. Blockchain technology in healthcare: A systematic review. Healthcare 7 (2):56. doi:10.3390/healthcare7020056.
  • Alva, G., Y. Lin, and G. Fang. 2018. An overview of thermal energy storage systems. Energy 144:341–78. doi:10.1016/j.energy.2017.12.037.
  • Anderson, A., G. Mageshwaran, R. T. Vulchi, S. Tallapaneni, J. Jeevahan, S. Mohan, and G. B. Joseph. 2018. Energy saving in high-pressure reciprocating air compressor. International Journal of Ambient Energy 39 (2):188–93. doi:10.1080/01430750.2016.1269684.
  • Baroutaji, A., A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. A. Abdelkareem, and A. G. Olabi. 2021. Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids 9:100064. doi:10.1016/j.ijft.2021.100064.
  • Benedetti, M., V. Bertini, I. Introna, S. Ubertin, and S. Ubertini. 2018. Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy 227:436–48. doi:10.1016/j.apenergy.2017.07.100.
  • Benedetti, M., F. Bonfà, I. Bertini, V. Introna, S. Salvatori, S. Ubertini, and R. Paradiso. 2019. Maturity-based approach for the improvement of energy efficiency in industrial compressed air production and use systems. Energy 186:115879. doi:10.1016/j.energy.2019.115879.
  • Benedetti, M., F. Bonfà, V. Introna, A. Santolamazza, and S. Ubertini. 2019. Real time energy performance control for industrial compressed air systems: Methodology and applications. Energies 12 (20):3935. doi:10.3390/en12203935.
  • Benedetti, M., D. Dadi, L. Giordano, V. Introna, P. E. Lapenna, and A. Santolamazza. 2021. Design of a database of case studies and technologies to increase the diffusion of low-temperature waste heat recovery in the industrial sector. Sustain 13 (9):5223. doi:10.3390/su13095223.
  • Brückner, S., S. Liu, L. Miró, M. Radspieler, L. F. Cabeza, and E. Lävemann. 2015. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies, Appl. Energy 151:157–67. doi:10.1016/j.apenergy.2015.01.147.
  • Cabello Eras, J. J., A. Sagastume Gutiérrez, V. Sousa Santos, and M. J. Cabello Ulloa. 2020. Energy management of compressed air systems. Assessing the production and use of compressed air in industry. Energy 213. doi:10.1016/j.energy.2020.118662.
  • Çağman, S., E. Soylu, and Ü. Ünver. 2022. A research on the easy-to-use energy efficiency performance indicators for energy audit and energy monitoring of industrial compressed air systems. Journal of Cleaner Production 365:1–8. doi:10.1016/j.jclepro.2022.132698.
  • Caruana, L., P. Refalo, 2018. Sustainability analysis of a compressed air system, Eng. Sustain. Energy Sustainability Conference. 38–45. https://www.um.edu.mt/library/oar//handle/123456789/30537
  • Castellanos, L. M., H. Hernandez-Herrera, J. I. Silva-Ortega, V. L. M. Diaz, and Z. G. Sanchez. 2019. Potential energy savings and CO2 emissions reduction in Colombia compressed air systems. International Journal of Energy Economics & Policy 9 (6):71–78. doi:10.32479/ijeep.8084.
  • Chang, K. H., Y. J. Sun, C. A. Lai, L. Der Chen, C. H. Wang, C. J. Chen, and C. M. Lin. 2022. Big data analytics energy-saving strategies for air compressors in the semiconductor industry–an empirical study. International Journal of Production Research 60 (6):1782–94. doi:10.1080/00207543.2020.1870015.
  • Christodoulides, P., R. Agathokleous, L. Aresti, S. A. Kalogirou, S. A. Tassou, and G. A. Florides. 2022. Waste heat recovery technologies revisited with emphasis on new solutions, including heat pipes, and case studies. Energies 15 (1):384. doi:10.3390/en15010384.
  • Doner, N., and K. Ciddi. 2022. Regression analysis of the operational parameters and energy-saving potential of industrial compressed air systems. Energy 252:2–7. doi:10.1016/j.energy.2022.124030.
  • Dudkiewicz, E., and N. Fidorów-Kaprawy. 2020. Hybrid domestic hot water system performance in industrial hall. Resources 9 (6):65. doi:10.3390/resources9060065.
  • Dudkiewicz, E., and P. Szałański. 2020. Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls. Thermal Science and Engineering Progress 18:100522. doi:10.1016/j.tsep.2020.100522.
  • Duflou, J. R., J. W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, M. Hauschild, and K. Kellens. 2012. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals - Manufacturing Technology 61 (2):587–609. doi:10.1016/j.cirp.2012.05.002.
  • El Hage, H., M. Ramadan, H. Jaber, M. Khaled, and A. G. Olabi. 2020. A short review on the techniques of waste heat recovery from domestic applications. Energy Sources, Part A Recovery: Utilization, and Environmental Effects 42 (24):3019–34. doi:10.1080/15567036.2019.1623940.
  • Elsaid, K., E. Taha Sayed, B. A. A. Yousef, M. Kamal Hussien Rabaia, M. Ali Abdelkareem, and A. G. Olabi. 2020. Recent progress on the utilization of waste heat for desalination: A review. Energy Conversion & Management 221:113105. doi:10.1016/j.enconman.2020.113105.
  • Elson, A., R. Tidball, and A. Hampson. 2015. Waste heat to power market assessment. Oak Ridge, TN, United States: Building Technologies Research and Integration Center (BTRIC), Oak Ridge National Laboratory. https://info.ornl.gov/sites/publications/files/Pub52953.pdf.
  • Englart, S., A. Jedlikowski, W. Cepiński, and M. Badura. 2019. Renewable energy sources for gas preheatingVol. 116. E3S Web Conf 00019. doi: 10.1051/e3sconf/201911600019.
  • Farhat, O., J. Faraj, F. Hachem, C. Castelain, and M. Khaled. 2022. A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations, Clean. Engineering & Technology 6:100387. doi:10.1016/j.clet.2021.100387.
  • Hajatzadeh Pordanjani, A., S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, and S. Wongwises. 2019. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management 198:111886. doi:10.1016/j.enconman.2019.111886.
  • Hassiba, R. J., and P. Linke. 2017. On the simultaneous integration of heat and carbon dioxide in industrial parks. Applied Thermal Engineering 127:81–94. doi:10.1016/j.applthermaleng.2017.07.157.
  • Hernandez-Herrera, H., J. I. Silva-Ortega, V. L. M. Diaz, Z. G. Sanchez, G. G. García, S. M. Escorcia, and H. E. Zarate. 2020. Energy savings measures in compressed air systems. International Journal of Energy Economics & Policy 10 (3):414–22. doi:10.32479/ijeep.9059.
  • Huang, F., J. Zheng, J. M. Baleynaud, and J. Lu. 2017. Heat recovery potentials and technologies in industrial zones. Journal of the Energy Institute 90 (6):951–61. doi:10.1016/j.joei.2016.07.012.
  • Jedlikowski, A., S. Englart, W. Cepiński, M. Badura, and M. A. Sayegh. 2020. Reducing energy consumption for electrical gas preheating processes. Thermal Science and Engineering Progress 19:100600. doi:10.1016/j.tsep.2020.100600.
  • Johnson, I., W. T. Choate, and A. Davidson. 2008. Waste heat recovery: Technology and opportunities in US industry, BCS Inc. Laurel, MD,United States. doi: 10.2172/1218716.
  • Jouhara, H., N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou. 2018. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress 6:268–89. doi:10.1016/j.tsep.2018.04.017.
  • Kimutai, I. K., and S. K. Kimutai. 2019. Investigation on energy efficiency and saving opportunities of industrial compressed air system in process industry. International Journal of Novel Research in Engineering and Science 6 (2):33–37.
  • Köse, E., L. Willer, and A. Sauer. 2021. Method for the economic evaluation of waste heat recovery technologies in bivalent facilities. Procedia CIRP 104:295–300. doi:10.1016/j.procir.2021.11.050.
  • Kostowski, W., K. Pajączek, A. Pociecha, J. Kalina, P. Niedzielski, and A. Przybył. 2019. Methods of waste heat recovery – a compressor station case study. Energy Conversion & Management 197:111837. doi:10.1016/j.enconman.2019.111837.
  • Kowalski, P., W. Szałański, and W. Cepiński. 2021. Cepiński, Waste heat recovery by air-to-water heat pump from exhausted ventilating air for heating of multi-family residential buildings. Energies 14 (23):7985. doi:10.3390/en14237985.
  • Luo, Y., J. Andresen, H. Clarke, M. Rajendra, and M. Maroto-Valer. 2019. A decision support system for waste heat recovery and energy efficiency improvement in data centres. Applied Energy 250:1217–24. doi:10.1016/j.apenergy.2019.05.029.
  • Mascarenhas, J. D. S., H. Chowdhury, M. Thirugnanasambandam, T. Chowdhury, and R. Saidur. 2019. Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production 231:183–95. doi:10.1016/j.jclepro.2019.05.158.
  • Mateu-Royo, C., J. Navarro-Esbrí, A. Mota-Babiloni, F. Molés, and M. Amat-Albuixech. 2019. Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery, Appl. Applied Energy 253:113504. doi:10.1016/j.apenergy.2019.113504.
  • McKenna, R. C., and J. B. Norman. 2010. Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy 38 (10):5878–91. doi:10.1016/j.enpol.2010.05.042.
  • McLaughlin, E., and J. K. Choi. 2023. Utilizing machine learning models to estimate energy savings from an industrial energy system, Resour. Environment and Sustainability 12:100103. doi:10.1016/j.resenv.2022.100103.
  • Men, Y., X. Liu, and T. Zhang. 2021. A review of boiler waste heat recovery technologies in the medium-low temperature range. Energy 237:121560. doi:10.1016/j.energy.2021.121560.
  • Morvay, Z., and D. Gvozdenac. 2008. Applied industrial energy and environmental management. John Wiley & Sons. doi:10.1002/9780470714379.
  • Mulvany, R., A. Arokiam, A. Belaidi, J. Ladbrook, and M. Higgins. 2017. Optimisation of compressed air systems energy usage through discrete event simulation: Compressor performance. 31ST annual European Simulation and Modelling Conference - ESM'2017, IST, Lisbon, Portugal. 328–35.
  • Naik-Dhungel, N., Waste heat to power systems. 2022. Accessed June 1, 2022. https://www.epa.gov/sites/default/files/2015-07/documents/waste_heat_to_power_systems.pdf.
  • Nehler, T., R. Parra, and P. Thollander. 2018. Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency 11 (5):1281–302. doi:10.1007/s12053-018-9647-3.
  • Nourin, F. N., J. Espindola, O. M. Selim, and R. S. Amano. 2022. Energy, exergy, and emission analysis on industrial air compressors. Journal of Energy Resources Technology 144 (4):1–14. doi:10.1115/1.4051682.
  • Olabi, A. G., K. Elsaid, E. T. Sayed, M. S. Mahmoud, T. Wilberforce, R. J. Hassiba, and M. A. Abdelkareem. 2021. Application of nanofluids for enhanced waste heat recovery: A review. Nano Energy 84:105871. doi:10.1016/j.nanoen.2021.105871.
  • Omer, G., A. H. Yavuz, R. Ahiska, and K. E. Calisal. 2020. Smart thermoelectric waste heat generator: Design, simulation and cost analysis, Sustain. Energy Technology Assessments 37:100623. doi:10.1016/j.seta.2019.100623.
  • Oyedepo, S. O., and B. A. Fakeye. 2021. Waste heat recovery technologies: Pathway to sustainable energy development. Journal Thermal Engineering 7 (1):324–48. doi:10.18186/thermal.850796.
  • Rabadia, C. 2015. Energy performance assessment of pumps and compressed air system in Fluid catalytic cracking unit of an oil refinery. GE-International Journal of Engineering Research 3 (12):16–29.
  • Ramadan, M., M. G. E. Rab, and M. Khaled. 2015. Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates. Case Studies in Thermal Engineering 6:61–68. doi:10.1016/j.csite.2015.06.001.
  • Saghafifar, M., A. Omar, K. Mohammadi, A. Alashkar, and M. Gadalla. 2019. A review of unconventional bottoming cycles for waste heat recovery: Part I – analysis, design, and optimization. Energy Conversion & Management 198 (October):110905–59. doi:10.1016/j.enconman.2018.10.047.
  • Saidur, R., N. A. Rahim, and M. Hasanuzzaman. 2010. A review on compressed-air energy use and energy savings. Renewable and Sustainable Energy Reviews 14 (4):1135–53. doi:10.1016/j.rser.2009.11.013.
  • Sarbu, I., and C. Sebarchievici. 2018. A comprehensive review of thermal energy storage. Sustainability 10 (1):191. doi:10.3390/su10010191.
  • Selim, O. M., M. Abousabae, A. Hasan, and R. S. Amano. 2021. Analysis of energy savings and CO2 emission reduction contribution for industrial facilities in USA. Journal of Energy Resources Technology 143 (8):1–12. doi:10.1115/1.4048983.
  • Seslija, D., I. Ignjatovic, and S. Dudic. 2012. Increasing the energy efficiency in compressed air systems. Energy Efficiency - innovations Ways Smart Energy, Future Towers Mod. Util. Chapter 7. doi:10.5772/47873.
  • Šešlija, D., I. Ignjatović, S. Dudić, and B. Lagod. 2011. Potential energy savings in compressed air systems in Serbia. African Journal of Business Management 5 (14):5637–45. doi:10.5897/AJBM10.1340.
  • Shcherba, V. E., E. A. Pavlyuchenko, E. Y. Nosov, and I. Yu Bulgakova. 2022. Approximation of the compression process to isothermal in a reciprocating compressor with a liquid piston. Applied Thermal Engineering 207:118151–58. doi:10.1016/j.applthermaleng.2022.118151.
  • Taheri, K., and R. Gadow. 2017. Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP Journal of Manufacturing Science and Technology 18:10–17. doi:10.1016/j.cirpj.2017.04.004.
  • Thabet, M., D. Sanders, V. Becerra, G. Tewkesbury, M. Haddad, T. Barker, 2020. Intelligent energy management of compressed air systems, 2020 IEEE 10th Int. Conf. Intell. Syst. IS 2020 - Proc, 153–58. 10.1109/IS48319.2020.9199977
  • Tong, Z., H. Wang, W. Xiong, D. S. Ting, R. Carriveau, and Z. Wang. 2021. Accumulated and transient exergy analyses of pneumatic systems with isochoric and isobaric compressed air storage tanks. Energy Storage 3 (6):1–10. doi:10.1002/est2.269.
  • Valenti, G., A. Valenti, and S. Staboli. 2019. Proposal of a thermally-driven air compressor for waste heat recovery. Energy Conversion and Management 196:1113–25. doi:10.1016/j.enconman.2019.06.072.
  • Vance, D., S. Nimbalkar, A. Thekdi, K. Armstrong, T. Wenning, J. Cresko, and M. Jin. 2019. Estimation of and barriers to waste heat recovery from harsh environments in industrial processes. Journal of Cleaner Production 222:539–49. doi:10.1016/j.jclepro.2019.03.011.
  • Van Staden, H. J., J. I. G. Bredenkamp, J. H. Marais, 2017. Improving sustainability of previously implemented energy savings strategies on mine compressed air systems. Proc. Conf. Ind. Commer. Use Energy, ICUE, IEEE 1–6. 10.23919/ICUE.2017.8067994
  • Wang, J., W. Liu, G. Liu, W. Sun, G. Li, and B. Qiu. 2020. Theoretical design and analysis of the waste heat recovery system of turbine exhaust steam using an absorption heat pump for heating supply. Energies 13:6256. doi:10.3390/en13236256.
  • Waste heat recovery (energy engineering). The-Crankshaft Publ. 2017. Accessed June 2, 2022. http://what-when-how.com/energy-engineering/waste-heat-recovery-energy-engineering/.
  • Woolley, E., Y. Luo, and A. Simeone. 2018. Industrial waste heat recovery: A systematic approach. Sustainable Energy Technologies and Assessments 29:50–59. doi:10.1016/j.seta.2018.07.001.
  • Xu, Z. Y., R. Z. Wang, and C. Yang. 2019. Perspectives for low-temperature waste heat recovery. Energy 176:1037–43. doi:10.1016/j.energy.2019.04.001.
  • Zahlan, J., and S. Asfour. 2015. A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems 35:176–90. doi:10.1016/j.jmsy.2015.01.003.
  • Zhang, B., M. Liu, Y. Li, and L. Wu. 2013. Optimization of an industrial air compressor system. Energy Engineering 110 (6):52–64. doi:10.1080/01998595.2013.10753695.
  • Živković, D., D. Končalović, V. Vukašinović, J. Nikolić, I. Novakovi, 2021. Preliminary cost-benefit analysis for the heat pump application in industry. 20th International Symposium INFOTEH-JAHORINA, East Sarajevo, BOSNIA AND HERZEGOVINA. 138–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.