340
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted production of biodiesel using sulfonated carbon-based catalyst derived from biowaste

, & ORCID Icon
Pages 9396-9412 | Received 06 Feb 2023, Accepted 05 Jun 2023, Published online: 26 Jul 2023

References

  • Abdullah, S. H. Y. S., N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, and A. Endut. 2017. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews 70:1040–51. doi:10.1016/J.RSER.2016.12.008.
  • Agapay, R. C., H. C. Liu, Y. H. Ju, A. W. Go, A. E. Angkawijaya, P. L. T. Nguyen, C. T. Truong, and K. L. Quijote. 2021. Synthesis and initial evaluation of solid acid catalyst derived from spent coffee grounds for the esterification of oleic acid and methanol. Waste and Biomass Valorization 12 (8):4387–97. doi:10.1007/S12649-020-01325-6.
  • Ahmed, M. J. K., M. Ahmaruzzaman, and R. A. Reza. 2014. Lignocellulosic-derived modified agricultural waste: Development, characterisation and implementation in sequestering pyridine from aqueous solutions. Journal of Colloid and Interface Science 428:222–34. doi:10.1016/J.JCIS.2014.04.049.
  • Ambat, I., V. Srivastava, and M. Sillanpää. 2018. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Reviews 90:356–69. doi:10.1016/J.RSER.2018.03.069.
  • Aransiola, E. F., T. V. Ojumu, O. O. Oyekola, T. F. Madzimbamuto, and D. I. O. Ikhu-Omoregbe. 2014. A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy 61:276–97. doi:10.1016/J.BIOMBIOE.2013.11.014.
  • Araujo, R. O., C. J. da Sda S, L. S. Queiroz, G. N. da Rocha Filho, C. E. F. da Costa, G. C. T. da Silva, R. Landers, M. J. F. Costa, A. A. S. Gonçalves, L. K. C. de Souza, et al. 2019. Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Conversion & Management 196:821–30. doi:10.1016/j.enconman.2019.06.059.
  • Arpia, A. A., W. H. Chen, S. S. Lam, P. Rousset, and M. D. G. de Luna. 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chemical Engineering Journals 403:126233. doi:10.1016/J.CEJ.2020.126233.
  • Bastos, R. R. C., A. P. da Luz Corrêa, P. T. S. da Luz, G. N. da Rocha Filho, J. R. Zamian, and L. R. V. da Conceição. 2020. Optimization of biodiesel production using sulfonated carbon-based catalyst from an amazon agro-industrial waste. Energy Conversion and Management 205:112457. doi:10.1016/J.ENCONMAN.2019.112457.
  • Basumatary, S., B. Nath, and P. Kalita. 2018. Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. Journal of Renewable and Sustainable Energy 10 (4):43105. doi:10.1063/1.5043328/383974.
  • Behera, B., S. M. Selvam, B. Dey, and P. Balasubramanian. 2020. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology 310:123392. doi:10.1016/J.BIORTECH.2020.123392.
  • Carrington, G., and J. Stephenson. 2018. The politics of energy scenarios: Are international energy agency and other conservative projections hampering the renewable energy transition? Energy Research and Social Science 46:103–13. doi:10.1016/J.ERSS.2018.07.011.
  • Catarino, M., S. Martins, A. P. Soares Dias, M. F. Costa Pereira, and J. Gomes. 2019. Calcium diglyceroxide as a catalyst for biodiesel production. Journal of Environmental Chemical Engineering 7 (3):103099. doi:10.1016/J.JECE.2019.103099.
  • Devi, T. B., D. Mohanta, and M. Ahmaruzzaman. 2019. Biomass derived activated carbon loaded silver nanoparticles: An effective nanocomposites for enhanced solar photocatalysis and antimicrobial activities. Journal of Industrial & Engineering Chemistry 76:160–72. doi:10.1016/J.JIEC.2019.03.032.
  • Doudin, K. I. 2021. Quantitative and qualitative analysis of biodiesel by NMR spectroscopic methods. Fuel 284:119114. doi:10.1016/J.FUEL.2020.119114.
  • Ellabban, O., H. Abu-Rub, and F. Blaabjerg. 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39:748–64. doi:10.1016/J.RSER.2014.07.113.
  • Farooq, M., A. Ramli, A. Naeem, T. Mahmood, S. Ahmad, M. Humayun, M. G. U. Islam. 2018. Biodiesel production from date seed oil (Phoenix dactylifera L.) via egg shell derived heterogeneous catalyst. Chemical Engineering Research & Design 132:644–51. doi:10.1016/J.CHERD.2018.02.002.
  • Flores, K. P., J. L. O. Omega, L. K. Cabatingan, A. W. Go, R. C. Agapay, and Y. H. Ju. 2019. Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew Energy 130:510–23. doi:10.1016/J.RENENE.2018.06.093.
  • Foroutan, R., R. Mohammadi, J. Razeghi, and B. Ramavandi. 2021. Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst. Renew Energy 168:1207–16. doi:10.1016/J.RENENE.2020.12.094.
  • Fraile, J. M., E. García-Bordejé, E. Pires, and L. Roldán. 2014. New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon NY 77:1157–67. doi:10.1016/J.CARBON.2014.06.059.
  • Gadore, V., S. R. Mishra, and M. Ahmaruzzaman. 2023. Bio-inspired sustainable synthesis of novel SnS2/biochar nanocomposite for adsorption coupled photodegradation of amoxicillin and congo red: Effects of reaction parameters, and water matrices. Journal of Environmental Management 334:117496. doi:10.1016/J.JENVMAN.2023.117496.
  • Gardy, J., M. Rehan, A. Hassanpour, X. Lai, and A. S. Nizami. 2019. Advances in nano-catalysts based biodiesel production from non-food feedstocks. Journal of Environmental Management 249:109316. doi:10.1016/J.JENVMAN.2019.109316.
  • Gebremariam, S. N., and J. M. Marchetti. 2018. Economics of biodiesel production: Review. Energy Conversion and Management 168:74–84. doi:10.1016/J.ENCONMAN.2018.05.002.
  • Gohain, M., K. Laskar, H. Phukon, U. Bora, D. Kalita, and D. Deka. 2020. Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manag 102:212–21. doi:10.1016/J.WASMAN.2019.10.049.
  • Hajamini, Z., M. A. Sobati, S. Shahhosseini, and B. Ghobadian. 2016. Waste fish oil (WFO) esterification catalyzed by sulfonated activated carbon under ultrasound irradiation. Applied Thermal Engineering 94:141–50. doi:10.1016/J.APPLTHERMALENG.2015.10.101.
  • Huang, M., J. Luo, Z. Fang, and H. Li. 2016. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Applied Catalysis B: Environmental 190:103–14. doi:10.1016/J.APCATB.2016.02.069.
  • Hu, B., Q. Lu, W. Y. Ting, Z. Z. Xi, C. M. Shu, L. D. Jia, C.-Q. Dong, and Y.-P. Yang. 2018. Catalytic mechanism of sulfuric acid in cellulose pyrolysis: A combined experimental and computational investigation. Journal of Analytical and Applied Pyrolysis 134:183–94. doi:10.1016/J.JAAP.2018.06.007.
  • Hussein, M. F., A. El Naga AO, M. El Saied, M. M. AbuBaker, S. A. Shaban, and F. Y. El Kady. 2021. Potato peel waste-derived carbon-based solid acid for the esterification of oleic acid to biodiesel. Environmental Technology & Innovation 21:101355. doi:10.1016/J.ETI.2021.101355.
  • Kang, S., Y. Jun, Y. Zhang, and J. Chang. 2013. Preparation of biomass hydrochar derived sulfonated catalysts and their catalytic effects for 5-hydroxymethylfurfural production. RSC Advances 3 (20):7360–66. doi:10.1039/C3RA23314F.
  • Kastner, J. R., J. Miller, D. P. Geller, J. Locklin, L. H. Keith, and T. Johnson. 2012. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today 190 (1):122–32. doi:10.1016/J.CATTOD.2012.02.006.
  • Kaur, N., and A. Ali. 2015. Biodiesel production via ethanolysis of jatropha oil using molybdenum impregnated calcium oxide as solid catalyst. RSC advances 5 (18):13285–95.
  • Konwar, L., P. Mäki-Arvela, J.-P. Mikkola, and reviews JM-C. 2019. So3H-Containing functional carbon materials: Synthesis, structure, and acid catalysis. Chemical Reviews 119 (22):11576–630. undefined. doi:10.1021/acs.chemrev.9b00199.
  • Kotwal, M. S., P. S. Niphadkar, S. S. Deshpande, V. V. Bokade, and P. N. Joshi. 2009. Transesterification of sunflower oil catalyzed by flyash-based solid catalysts. Fuel 88:1773–78. doi:10.1016/J.FUEL.2009.04.004.
  • Laskar, I. B., K. Rajkumari, R. Gupta, S. Chatterjee, B. Paul, and L. Rokhum. 2018. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Advances 8:20131–42. doi:10.1039/C8RA02397B.
  • Lee, H. V., J. C. Juan, and Y. H. Taufiq-Yap. 2015. Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production. Renew Energy 74:124–32. doi:10.1016/J.RENENE.2014.07.017.
  • Malins, K., J. Brinks, V. Kampars, and I. Malina. 2016. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Applied Catalysis: A, General 519:99–106. doi:10.1016/J.APCATA.2016.03.020.
  • Marinković, M., H. Waisi, S. Blagojević, A. Zarubica, R. Ljupković, A. Krstić, and B. Janković. 2022. The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production. Fuel 315:123246. doi:10.1016/J.FUEL.2022.123246.
  • Miladinović, M. R., M. V. Zdujić, D. N. Veljović, J. B. Krstić, I. B. Banković-Ilić, V. B. Veljković, and O. S. Stamenković. 2020. Valorization of walnut shell ash as a catalyst for biodiesel production. Renewable Energy 147:1033–43. doi:10.1016/J.RENENE.2019.09.056.
  • Munir, M., M. Ahmad, M. Saeed, A. Waseem, A. S. Nizami, S. Sultana, M. Zafar, M. Rehan, G. R. Srinivasan, A. M. Ali, et al. 2021. Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst. Renewable and Sustainable Energy Reviews 138:110558. doi:10.1016/J.RSER.2020.110558.
  • Naik, S. N., V. V. Goud, P. K. Rout, and A. K. Dalai. 2010. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 14 (2):578–97. doi:10.1016/J.RSER.2009.10.003.
  • Ngaosuwan, K., J. G. Goodwin, and P. Prasertdham. 2016. A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew Energy 86:262–69. doi:10.1016/J.RENENE.2015.08.010.
  • Prahas, D., Y. Kartika, N. Indraswati, and S. Ismadji. 2008. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem Eng J 140:32–42. doi:10.1016/J.CEJ.2007.08.032.
  • Putra, M. D., C. Irawan, R. Y. Udiantoro, N. IF, and I. F. Nata. 2018. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. Journal of Cleaner Production 195:1249–58. doi:10.1016/J.JCLEPRO.2018.06.010.
  • Qin, F., C. Zhang, G. Zeng, D. Huang, X. Tan, and A. Duan. 2022. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews 157:112056. doi:10.1016/J.RSER.2021.112056.
  • Rezania, S., S. Mahdinia, B. Oryani, J. Cho, E. E. Kwon, A. Bozorgian, H. R. Nodeh, N. Darajeh, and K. Mehranzamir. 2022. Biodiesel production from wild mustard (Sinapis Arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles. Fuel 307:121759. doi:10.1016/J.FUEL.2021.121759.
  • Sajjadi, B., A. R. Abdul Aziz, and S. Ibrahim. 2014. Investigation, modelling and reviewing the effective parameters in microwave-assisted transesterification. Renewable and Sustainable Energy Reviews 37:762–77. doi:10.1016/J.RSER.2014.05.021.
  • Shu, Q., Z. Nawaz, J. Gao, Y. Liao, Q. Zhang, D. Wang, and J. Wang. 2010. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation. Bioresource Technology 101 (14):5374–84. doi:10.1016/J.BIORTECH.2010.02.050.
  • Singh, V., L. Belova, B. Singh, and Y. C. Sharma. 2018. Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2zr5o12): Process optimization through response surface methodology (RSM). Energy Conversion and Management 174:198–207. doi:10.1016/J.ENCONMAN.2018.08.029.
  • Su, F., and Y. Guo. 2014. Advancements in solid acid catalysts for biodiesel production. Green Chemistry: An International Journal and Green Chemistry Resource: GC 16:2934–57. doi:10.1039/C3GC42333F.
  • Tan, Y. H., M. O. Abdullah, C. Nolasco-Hipolito, and Y. H. Taufiq-Yap. 2015. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl Energy 160:58–70. doi:10.1016/J.APENERGY.2015.09.023.
  • Thushari, I., and S. Babel. 2018. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology 248:199–203. doi:10.1016/J.BIORTECH.2017.06.106.
  • Titirici, M. M., R. J. White, C. Falco, and M. Sevilla. 2012. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy & Environmental Science 5:6796–822. doi:10.1039/C2EE21166A.
  • Xie, W., and J. Chen. 2014. Heterogeneous interesterification of triacylglycerols catalyzed by using potassium-doped alumina as a solid catalyst. Journal of Agricultural & Food Chemistry 62 (43):10414–21. doi:10.1021/JF503726A/ASSET/IMAGES/LARGE/JF-2014-03726A_0004.JPEG.
  • Yadav, G., and M. Ahmaruzzaman. 2022. Citrus limetta peel-derived catalyst for sustainable production of biodiesel. ACS Omega 7:28534–44. doi:10.1021/ACSOMEGA.2C03314.
  • Yadav, G., N. Yadav, and M. Ahmaruzzaman. 2022. Microwave-assisted synthesis of biodiesel by a green carbon-based heterogeneous catalyst derived from areca nut husk by one-pot hydrothermal carbonization. Scientific Reports 121 (1):1–14. doi:10.1038/s41598-022-25877-w.
  • Yadav, G., N. Yadav, and M. Ahmaruzzaman. 2023. Microwave-assisted sustainable synthesis of biodiesel on Oryza sativa catalyst derived from agricultural waste by esterification reaction. Chemical Engineering and Processing: Process Intensif 187:109327. doi:10.1016/J.CEP.2023.109327.
  • Yadav, N., G. Yadav, and M. Ahmaruzzaman. 2023. Biomass-derived sulfonated polycyclic aromatic carbon catalysts for biodiesel production by esterification reaction. Biofuels, Bioproducts and Biorefining. doi:10.1002/BBB.2486.
  • Yu, H., J. Wu, W. Wei, X. Zhang, C. Ren, Y. Dong, and S. Cheng. 2022. Synthesis of magnetic carbonaceous acid derived from waste garlic peel for biodiesel production via esterification. Frontiers in Energy 17 (1):176–87. doi:10.1007/S11708-022-0836-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.