103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of heat transfer and damage characteristics of high pressure abrasive water jet impacting high temperature sandstone

, , ORCID Icon, & ORCID Icon
Pages 9413-9431 | Received 02 Mar 2023, Accepted 20 Jun 2023, Published online: 25 Jul 2023

References

  • Abbasi, M., N. Khazali, and M. Sharifi. 2017. Analytical model for convection-conduction heat transfer during water injection in fractured geothermal reservoirs with variable rock matrix block size. Geothermics 69:1–14. doi:10.1016/j.geothermics.2017.04.002.
  • Alkandari, A., and A. S. Rattner. 2022. Characterization of laminar and turbulent supercritical carbon dioxide slot jet impingement heat transfer. International Journal of Heat & Mass Transfer 193:122949. doi:10.1016/j.ijheatmasstransfer.2022.122949.
  • Beentjes, I., J. T. Bender, A. J. Hawkins, and J. W. Tester. 2020. Chemical dissolution drilling of barre granite using a sodium hydroxide enhanced supercritical water jet. Rock Mechanics & Rock Engineering 53 (2):483–96. doi:10.1007/s00603-019-01912-7.
  • Beentjes, I., J. T. Bender, and J. W. Tester. 2019. Dissolution and thermal spallation of barre granite using pure water hydrothermal jets. Rock Mechanics & Rock Engineering 52 (5):1339–52. doi:10.1007/s00603-018-1647-2.
  • Cai, C., F. Gao, Z. Huang, and Y. Yang. 2018. Numerical simulation on the flow field characteristics and impact capability of liquid nitrogen jet. Energy Exploration & Exploitation 36 (5):989–1005. doi:10.1177/0144598717743994.
  • Chen, Y., J. Ni, W. Shao, and R. Azzam. 2012. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. International Journal of Rock Mechanics & Mining Sciences 56:62–66. doi:10.1016/j.ijrmms.2012.07.026.
  • Chi, H., G. Li, Z. Huang, S. Tian, and X. Song. 2015. Maximum drillable length of the radial horizontal micro-hole drilled with multiple high-pressure water jets. Journal of Natural Gas Science & Engineering 26:1042–49. doi:10.1016/j.jngse.2015.07.044.
  • Dai, X., Z. Huang, X. Wu, H. Shi, and C. Xiong. 2021. Failure analysis of high-temperature granite under the joint action of cutting and liquid nitrogen jet impingement. Rock Mechanics & Rock Engineering 54 (12):6249–64. doi:10.1007/s00603-021-02600-1.
  • Davidzon, M. I. 2012. Newton’s law of cooling and its interpretation. International Journal of Heat & Mass Transfer 55 (21–22):5397–402. doi:10.1016/j.ijheatmasstransfer.2012.03.035.
  • Ge, Z., K. Deng, Z. Zhou, M. Yang, and C. Chai. 2020. Fracture characteristics of coal jointly impacted by multiple jets. Engineering Fracture Mechanics 235:107171. doi:10.1016/j.engfracmech.2020.107171.
  • Ge, Z., J. Shangguan, Z. Zhou, Z. Li, L. Liu, C. Chen, and Shao C. 2023. Investigation of fracture damage and breaking energy consumption of hard rock repeatedly cut by abrasive water jet. Rock Mechanics & Rock Engineering 56 (4):3215–30. 10.1007/s00603-023-03230-5
  • Golubovic, J. J. Z. 1999. Fourier’s law of heat conduction in a nonlinear fluid. Journal of Thermal Stresses 22 (3):293–303. doi:10.1080/014957399280887.
  • Gomez, C. F., van der Geld CWM, J. G. M. Kuerten, M. Bsibsi, van Esch BPM, C. W. M. van der Geld, and B. P. M. van Esch. 2021. Film boiling in quench cooling with high-temperature jets. International Journal of Heat & Mass Transfer 164:120578. doi:10.1016/j.ijheatmasstransfer.2020.120578.
  • He, Z., G. Li, S. Tian, H. Wang, Z. Shen, and J. Li. 2016. SEM analysis on rock failure mechanism by supercritical CO 2 jet impingement. Journal of Petroleum Science & Engineering 146:111–20. doi:10.1016/j.petrol.2016.04.023.
  • Hu, X., X. Song, Y. Liu, Z. Cheng, J. Ji, and Z. Shen. 2019. Experiment investigation of granite damage under the high-temperature and high-pressure supercritical water condition. Journal of Petroleum Science & Engineering 180:289–97. doi:10.1016/j.petrol.2019.05.031.
  • Li, P., and M. Cai. 2021. Challenges and new insights for exploitation of deep underground metal mineral resources. Transactions of Nonferrous Metals Society of China 31 (11):3478–505. 10.1016/S1003-6326(21)65744-8.
  • Li, Z., Z. Ge, Z. Zhou, J. Mi, L. Liu, J. Shangguan, and C. Shao. 2023. Numerical simulation and experimental verification of heterogeneous granite impacted by abrasive water jet based on SPH-FEM coupling algorithm. Powder Technology 416:118233. doi:10.1016/j.powtec.2023.118233.
  • Liu, H. T. 2007. Hole drilling with abrasive fluidjets. The International Journal of Advanced Manufacturing Technology 32 (9–10):942–57. doi:10.1007/s00170-005-0398-x.
  • Liu, Y., D. Hirama, and S. Matsusaka. 2012. Particle removal process during application of impinging dry ice jet. Powder Technology 217:607–13. doi:10.1016/j.powtec.2011.11.032.
  • Lu, Y., S. Huang, Z. Ge, Z. Zhou, W. Liu, and Y. Guan. 2022. Research progress and strategic thinking of coal mine water jet technology to enhance coal permeability in China. Journal of China Coal Society 47 (9):3189–211.
  • Lu, Y., J. Tang, Z. Ge, B. Xia, and Y. Liu. 2013. Hard rock drilling technique with abrasive water jet assistance. International Journal of Rock Mechanics & Mining Sciences 60:47–56. doi:10.1016/j.ijrmms.2012.12.021.
  • Marston, J. O., and C. Li. 2019. Jet dynamics during vaporization of water drops in hot oil films. Experimental Thermal & Fluid Science 109:109873. doi:10.1016/j.expthermflusci.2019.109873.
  • Modak, M., S. K. Sahu, and H. S. Park. 2021. An experimental study on heat transfer of different aqueous surfactant solutions horizontal impinging jet using infrared thermography. Applied Thermal Engineering 188:116668. doi:10.1016/j.applthermaleng.2021.116668.
  • Reinsch, T., B. Paap, S. Hahn, V. Wittig, and S. van den Berg. 2018. Insights into the radial water jet drilling technology – Application in a quarry. Journal of Rock Mechanics & Geotechnical Engineering 10 (2):236–48. doi:10.1016/j.jrmge.2018.02.001.
  • Song, D., E. Wang, Z. Li, E. Zhao, and W. Xu. 2015. An EMR-based method for evaluating the effect of water jet cutting on pressure relief. Arabian Journal of Geosciences 8 (7):4555–64. doi:10.1007/s12517-014-1585-6.
  • Su, Z., Z. Jiang, and Z. Sun. 2009. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index. Procedia Earth and Planetary Science 1 (1):414–19. doi:10.1016/j.proeps.2009.09.066.
  • Wagner, H. 2019. Deep mining: A rock engineering challenge. Rock Mechanics & Rock Engineering 52 (5):1417–46. doi:10.1007/s00603-019-01799-4.
  • Wang, G., J. Tan, and L. Wang. 2021. Numerical simulation of temperature field and temperature stress of thermal jet for water measurement. European Journal of Remote Sensing 54 (sup2):11–20. doi:10.1080/22797254.2020.1743956.
  • Wu, X., Z. Huang, R. Li, S. Zhang, H. Wen, P. Huang, X. Dai, and C. Zhang. 2018. Investigation on the damage of high-temperature shale subjected to liquid nitrogen cooling. Journal of Natural Gas Science & Engineering 57:284–94. doi:10.1016/j.jngse.2018.07.005.
  • Wu, X., Z. Huang, S. Zhang, Z. Cheng, R. Li, H. Song, H. Wen, and P. Huang. 2019. Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mechanics & Rock Engineering 52 (8):2585–603. doi:10.1007/s00603-018-1711-y.
  • Wu, X., Z. Huang, H. Zhao, and S. Zhang. 2019. A transient fluid-thermo-structural coupling study of high-velocity LN2 jet impingement on rocks. International Journal of Rock Mechanics & Mining Sciences 123:104061. doi:10.1016/j.ijrmms.2019.104061.
  • Xiao, S., Q. Ren, Z. Ge, B. Chen, and F. Wang. 2020. Study of the rock-breaking and drilling performance of a self-rotatory water-jet bit in water-jet drilling and its influential factors. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects ahead-of-print(ahead-of-print), 1–17. doi:10.1080/15567036.2020.1767732.
  • Yin, T., Q. Li, and X. Li. 2019. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments. Engineering Fracture Mechanics 222:106740. doi:10.1016/j.engfracmech.2019.106740.
  • Zhang, J., Y. Li, Y. Zhang, F. Yang, C. Liang, and S. Tan. 2020. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Advances in Mechanical Engineering 12 (10):2072265317. doi:10.1177/1687814020962290.
  • Zhang, S., Z. Huang, G. Li, X. Wu, C. Peng, and W. Zhang. 2018. Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Applied Thermal Engineering 129:1348–57. doi:10.1016/j.applthermaleng.2017.10.042.
  • Zhang, S., Z. Huang, H. Wang, G. Li, K. Sepehrnoori, X. Wu, and C. Hong. 2019. Experimental study on the rock-breaking characteristics of abrasive liquid nitrogen jet for hot dry rock. Journal of Petroleum Science & Engineering 181:106166. doi:10.1016/j.petrol.2019.06.030.
  • Zhang, S., Z. Huang, H. Wang, H. Zhang, C. Zhang, and C. Xiong. 2018. Thermal characteristics analysis with local thermal non-equilibrium model during liquid nitrogen jet fracturing for HDR reservoirs. Applied Thermal Engineering 143:482–92. doi:10.1016/j.applthermaleng.2018.07.088.
  • Zhang, S., Z. Huang, H. Zhang, Z. Guo, X. Wu, T. Wang, C. Zhang, and C. Xiong. 2018. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet. Geothermics 76:253–60. doi:10.1016/j.geothermics.2018.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.