73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sulfur migration and distribution during pyrolysis of a typical Chinese pyrite-enriched coal

, , , , &
Pages 9432-9449 | Received 09 Nov 2022, Accepted 19 Jun 2023, Published online: 25 Jul 2023

References

  • Burkey, M. F. 2018. A review of iron sulfide and oxides in coal mine waste. Ohio, US: Kent State University, College of Arts and Sciences.
  • Cheng, J., J. Zhou, J. Liu, Z. Zhou, Z. Huang, X. Cao, X. Zhao, and K. Cen. 2003. Sulfur removal at high temperature during coal combustion in furnaces: A review. Progress in Energy and Combustion Science 29:381–405. doi:10.1016/S0360-1285(03)00030-3.
  • Chen, H. K., B. Q. Li, and B. J. Zhang. 1999. Effects of mineral matter on products and sulfur distributions in hydropyrolysis. Fuel 78:713–19. doi:10.1016/S0016-2361(98)00195-1.
  • Chen, H. K., B. Q. Li, and B. J. Zhang. 2000. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis. Fuel 79 (13):1627–31. doi:10.1016/S0016-2361(00)00015-6.
  • Chen, C., Y. G. Tang, and X. Guo. 2022. Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy. Fuel 310:122362. doi:10.1016/j.fuel.2021.122362.
  • Chou, C. L. 2012. Sulfur in coals: A review of geochemistry and origins. International Journal of Coal Geology 100:1–13. doi:10.1016/j.coal.2012.05.009.
  • Cui, X., X. L. Li, Y. M. Li, and S. Li. 2017. Evolution mechanism of oxygen functional groups during pyrolysis of Datong coal. Journal of Thermal Analysis and Calorimetry 129:1169–80. doi:10.1007/s10973-017-6224-5.
  • Debiagi, P., C. Yildiz, M. Richter, J. Ströhle, B. Epple, T. Faravelli, and C. Hasse. 2021. Experimental and modeling assessment of sulfur release from coal under low and high heating rates. Proceedings of the Combustion Institute 38 (3):4053–61. doi:10.1016/j.proci.2020.06.121.
  • Debiagi, P., C. Yildiz, J. Strhle, B. Epple, C. Hasse, and C. Hasse. 2021. Systematic evaluation and kinetic modeling of low heating rate sulfur release in various atmospheres. Fuel 289:119739. doi:10.1016/j.fuel.2020.119739.
  • Giroux, L., J. P. Charland, and J. A. MacPhee. 2006. Application of thermogravimetric fourier transform infrared spectroscopy (TG−FTIR) to the analysis of oxygen functional groups in coal. Energy & Fuels 20:1988–96. doi:10.1021/ef0600917.
  • Gryglewicz, G. 1995. Sulfur transformations during pyrolysis of a high sulfur Polish coking coal. Fuel 74:356–61. doi:10.1016/0016-2361(95)93467-r.
  • Guo, J., Y. F. Shen, M. J. Wang, J. Kong, L. P. Chang, W. R. Bao, and K. C. Xie. 2022. Role of gas coal in sulfur regulation from the release behavior and mass transfer condition of volatiles. Fuel 317:123460. doi:10.1016/J.FUEL.2022.123460.
  • Guo, H. Q., L. L. Xie, X. L. Wang, F. R. Liu, M. J. Wang, and R. S. Hu. 2014. Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC. Journal of Fuel Chemistry and Technology 42:1160–66. doi:10.1016/s1872-5813(14)60047-5.
  • Hou, J. L., Y. Ma, S. Y. Li, J. Shi, L. He, and J. Li. 2018. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis. Fuel 231:134–44. doi:10.1016/j.fuel.2018.05.046.
  • Huang, F., L. Q. Zhang, B. J. Yi, Z. J. Xia, and C. G. Zheng. 2015. Transformation pathway of excluded mineral pyrite decomposition in CO2 atmosphere. Fuel Processing Technology 138:814–24. doi:10.1016/j.fuproc.2015.07.028.
  • Jayaraman, K., M. V. Kök, and I. Gökalp. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Jia, X., Q. H. Wang, K. F. Cen, and L. M. Cheng. 2016. Sulfur transformation during the pyrolysis of coal mixed with coal ash in a fixed bed reactor. Fuel 177:260–67. doi:10.1016/j.fuel.2016.03.013.
  • Karaca, S. 2003. Desulfurization of a turkish lignite at various gas atmospheres by pyrolysis. Effect of mineral matter. Fuel 82:1509–16. doi:10.1016/S0016-2361(03)00068-1.
  • Krishnamoorthy, V., and S. V. Pisupati. 2016. Fate of sulfur during entrained-flow gasification of pittsburgh No. 8 Coal: Influence of particle size, sulfur forms, and temperature. Energy & Fuels 30:3241–50. doi:10.1021/acs.energyfuels.5b02691.
  • Lei, M., Y. C. Zhang, D. K. Hong, and B. Ye. 2022. Characterization of nitrogen and sulfur migration during pressurized coal pyrolysis and oxy-fuel combustion. Fuel 317:123484. doi:10.1016/J.FUEL.2022.123484.
  • Liang, X. R., Q. H. Wang, Z. Y. Luo, E. Eddings, T. Ring, S. Li, L. Han, J. Lin, and G. Xie. 2021. Experimental study on sulfur-containing products in pressurized oxy-fuel pyrolysis of pulverised coal. Journal of Cleaner Production 279:123818. doi:10.1016/j.jclepro.2020.123818.
  • Lin, L., S. J. Khang, and T. C. Keener. 1997. Coal desulfurization by mild pyrolysis in a dual-auger coal feeder. Fuel Processing Technology 53:15–29. doi:10.1016/s0378-3820(97)00008-8.
  • Liu, Y. H., Y. Guan, Y. D. Zhang, and Y. Xiong. 2022. Effects of atmosphere on mineral transformation of Zhundong coal during gasification in CO2/H2O conditions. Fuel 310:122428. doi:10.1016/j.fuel.2021.122428.
  • Liu, F., W. Li, H. Guo, B. Li, Z. Bai, and R. Hu. 2011. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface. Journal of Fuel Chemistry and Technology 39 (2):81–84. doi:10.1016/S1872-5813(11)60011-X.
  • Liu, F. R., B. Q. Li, W. Li, Z. Q. Bai, and J. Yperman. 2010. Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres. Fuel Processing Technology 91:1486–90. doi:10.1016/j.fuproc.2010.05.025.
  • Liu, W. J., Z. G. Shao, and Y. Xu. 2021. Emission characteristics of nitrogen and sulfur containing pollutants during the pyrolysis of oily sludge with and without catalysis. Journal of Hazardous Materials 401:123820. doi:10.1016/j.jhazmat.2020.123820.
  • Li, D., C. Zhang, J. Xia, P. Tan, L. Yang, and G. Chen. 2013. Evolution of organic sulfur in the thermal upgrading process of shengli lignite. Energy & Fuels 27:3446–53. doi:10.1021/ef400291m.
  • Li, B. Q., X. G. Zhuang, J. Li, X. Querol, O. Font, and N. Moreno. 2016. Geological controls on mineralogy and geochemistry of the late permian coals in the liulong mine of the Liuzhi coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology 154-155:1–15. doi:10.1016/j.coal.2015.12.003.
  • Luo, M., Y. Qin, J. Cai, L. Qian, S. Wang, H. Zhang, L. Zhou, and P. Liu. 2021. Sulfur release and migration characteristics in chemical looping combustion of high-sulfur coal. Process Safety Environmental Protection 151:1–9. doi:10.1016/j.psep.2021.05.004.
  • Ma, H. H., L. Zhou, S. C. Lv, J. W. Chew, and Z. J. Wang. 2019. Review on reaction mechanisms of sulfur species during coal combustion. Journal of Energy Resources Technology 141:1. doi:10.1115/1.4043554.
  • Miura, K., K. Mae, M. Shimada, and H. Minami. 2001. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals. Energy & Fuels 15:629–36. doi:10.1021/ef000185v.
  • Nguyen, M., C. Berndt, D. Reichel, S. Krzack, and B. Meyer. 2015. Pyrolysis behavior study of a tar- and sulphur-rich brown coal and GC–FID/MS analysis of its tar. Journal of Analytical and Applied Pyrolysis 115:194–202. doi:10.1016/j.jaap.2015.07.014.
  • Pachler, R. F., K. Mayer, S. Penthor, M. Kollerits, and H. Hofbauer. 2018. Fate of sulfur in chemical looping combustion of gaseous fuels using a copper-based oxygen carrier. International Journal of Greenhouse Gas Control 71:86–94. doi:10.1016/j.ijggc.2018.02.006.
  • Qi, Y. Q., W. Li, H. K. Chen, and B. Q. Li. 2004. Sulfur release from coal in fluidized-bed reactor through pyrolysis and partial oxidation with low concentration of oxygen. Fuel 83:2189–94. doi:10.1016/j.fuel.2004.06.009.
  • Sarwar, A., M. Nasiruddin Khan, and K. F. Azhar. 2012. Kinetic studies of pyrolysis and combustion of Thar coal by thermogravimetry and chemometric data analysis. Journal of Thermal Analysis and Calorimetry 109:97–103. doi:10.1007/s10973-011-1725-0.
  • Schmidt, D., C. Yildiz, J. Stroehle, and B. Epple. 2021. Release of nitrogen, sulfur and chlorine species from coal in carbon dioxide atmosphere. Fuel 284:119279. doi:10.1016/j.fuel.2020.119279.
  • Strydom, C. A., J. R. Bunt, H. H. Schobert, and M. Raghoo. 2011. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes. Fuel Processing Technology 92:764–70. doi:10.1016/j.fuproc.2010.09.008.
  • Sun, T., K. D. Bake, P. R. Craddock, B. Gunawan, L. M. Darnell, K. K. Bissada, and A. E. Pomerantz. 2019. Acid demineralization with pyrite removal and critical point drying for kerogen microstructural analysis. Fuel 253:266–72. doi:10.1016/j.fuel.2019.05.024.
  • Wang, B. W., Y. M. Cao, J. Li, W. S. Wang, H. B. Zhao, and C. G. Zheng. 2016. Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier. Energy & Fuels 30:8499–510. doi:10.1021/acs.energyfuels.6b01446.
  • Wang, M., Q. Du, Y. Li, J. Gao, B. Xiao, and H. Wang. 2020. Transformation of sulfur in coal during rapid pyrolysis at high temperatures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2020.1757789.
  • Wang, M., Q. Du, Y. Li, J. Xu, J. Gao, and H. Wang. 2019. Effect of steam on the transformation of sulfur during demineralized coal pyrolysis. Journal of Analytical and Applied Pyrolysis 140:161–69. doi:10.1016/j.jaap.2019.03.011.
  • Wang, M., C. Fu, L. Chang, and K. Xie. 2016. Effects of flotation on the release behavior of sulfur and nitrogen during coal pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:347–53. doi:10.1080/15567036.2013.765524.
  • Wang, B. W., C. F. Guo, B. H. Xu, X. G. Li, J. J. Ma, J. H. Ji, D. F. Mei, and H. B. Zhao. 2021. Synergistic reaction investigation of the NiO modified CaSO4 oxygen carrier with lignite for simultaneous CO2 capture and SO2 removal. Fuel Processing Technology 220:106895. doi:10.1016/j.fuproc.2021.106895.
  • Wang, B. W., W. Wang, H. Y. Li, Z. Y. Cai, T. Jiang, Y. C. Liang, and N. Ding. 2020. Study on the performance of the purified CaSO4 oxygen carrier derived from wet flue gas desulphurization slag in coal chemical looping combustion. Journal of Fuel Chemistry and Technology 48:908–19. doi:10.1016/S1872-5813(20)30063-3.
  • Wang, B. W., W. S. Wang, Q. Ma, J. Lu, H. B. Zhao, and C. G. Zheng. 2016. In-depth investigation of chemical looping combustion of a chinese bituminous coal with CuFe2O4 combined oxygen carrier. Energy & Fuels 30:2285–94. doi:10.1021/acs.energyfuels.5b02605.
  • Wang, B. W., G. Xiao, X. Y. Song, H. B. Zhao, and C. G. Zheng. 2014. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier. Journal of Thermal Analysis and Calorimetry 118:1593–602. doi:10.1007/s10973-014-4074-y.
  • Wei, R. D., L. W. Ren, and T. C. Zhu. 2020. The evolution characteristic of sulfur-containing gases during coal thermal conversion. Journal of the Energy Institute 93:1503–10. doi:10.1016/j.joei.2020.01.012.
  • Xu, F., M. Chu, X. Gu, Z. Sun, and X. Sun. 2021. Sulfur release and transformation during the pyrolysis of lignite with different particle sizes. Journal of Abalytical and Applied Pyrolysis 156:105162. doi:10.1016/J.JAAP.2021.105162.
  • Xue, Y. M., J. S. Wang, H. Q. Guo, M. J. Wang, F. R. Liu, and R. S. Hu. 2020. Effects of minerals and Fe3+ on sulfur removal and its release behavior during coal pyrolysis under different atmospheres. Journal of Thermal Analysis and Calorimetry 142:2319–26. doi:10.1007/s10973-020-09551-9.
  • Yang, N. N., H. Q. Guo, Y. Q. Lei, Y. B. Zhang, M. J. Wang, F. R. Liu, R. S. Hu, and Y. F. Hu. 2019. XAS combined with Py-GC study on the effects of temperatures and atmospheres on sulfur release and its transformation behavior during coal pyrolysis. Fuel 250:373–80. doi:10.1016/j.fuel.2019.04.010.
  • Yankovsky, S., G. Kuznetsov, A. Tolokolnikov, I. Cherednik, and A. Ivanov. 2021. Experimental study of the processes of reducing the formation of sulfur oxides during the co-combustion of particles of metalignitous coal and wood processing waste. Fuel 291:120233. doi:10.1016/j.fuel.2021.120233.
  • Yu, J. L., L. P. Chang, W. Xie, and D. H. Wang. 2011. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization. Korean Journal of Chemical Engineering 28:1054–57. doi:10.1007/s11814-010-0482-2.
  • Yu, X., D. X. Yu, G. Yu, F. Q. Liu, J. K. Han, J. Q. Wu, and M. H. Xu. 2021. Temperature-resolved evolution and speciation of sulfur during pyrolysis of a high-sulfur petroleum coke. Fuel 295:120609. doi:10.1016/j.fuel.2021.120609.
  • Zhang, C., T. T. Li, J. Xia, and C. G. 2011. Experimental research in the releasing characteristics of sulfur-containing gases in high-sulfur coal under different atmospheres during mild thermal upgrading. Chinese Society for Electrical Engineering 31:24–31.
  • Zhang, L. J., Z. H. Li, Y. L. Yang, Y. B. Zhou, B. Kong, J. H. Li, and L. L. Si. 2016. Effect of acid treatment on the characteristics and structures of high-sulfur bitumious coal. Fuel 184:418–29. doi:10.1016/j.fuel.2016.07.002.
  • Zhang, H. R., J. Niu, X. Yin, Y. X. Guo, and F. Q. Cheng. 2020. Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity. Fuel 262:116527. doi:10.1016/j.fuel.2019.116527.
  • Zhao, H. L., Z. Q. Bai, Z. X. Guo, L. X. Kong, W. Yuchi, H. Z. Li, J. Bai, and W. Li. 2021. In situ study of the decomposition of pyrite in coal during hydropyrolysis. Journal of Analytical and Applied Pyrolysis 154:105024. doi:10.1016/j.jaap.2021.105024.
  • Zheng, Y., B. W. Wang, K. Song, and C. G. Zheng. 2006. The perfomance research on new oxygen carrier CaSO4 used in chemical-looping combustion. Journal of Engineering Thermophysics-RUS 27:531–33.
  • Zhou, Y., P. J. Xu, H. F. Cheng, and Q. F. Liu. 2018. Thermal phase transition of pyrite from coal. Journal of Thermal Analysis and Calorimetry 134:2391–96. doi:10.1007/s10973-018-7634-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.