82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization strategies to enhance waste heat recovery from engine coolant using thermoelectric devices

, , &
Pages 10597-10615 | Received 08 May 2023, Accepted 09 Aug 2023, Published online: 23 Aug 2023

References

  • Abderezzak, B., and S. Randi. 2020. Experimental investigation of waste heat recovery potential from car radiator with thermoelectric generator. Thermal Science and Engineering Progress 20:100686. doi:10.1016/j.tsep.2020.100686.
  • Açıkkalp, E., L. Chen, and M. H. Ahmadi. 2020. Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermo-electric generator hybrid systems. Energy Reports 6:10–16. doi:10.1016/j.egyr.2019.11.108.
  • Alegria, P., L. Catalan, M. Araiz, A. Rodriguez, and D. Astrain. 2022. Experimental development of a novel thermoelectric generator without moving parts to harness shallow hot dry rock fields. Applied Thermal Engineering 200:117619. doi:10.1016/j.applthermaleng.2021.117619.
  • Al-Widyan, M., M. Al-Nimr, and Q. Al-Oweiti. 2021. A hybrid TEG/Thermal radiator system for space heating and electric power generation. Journal of Building Engineering 41:102364. doi:10.1016/j.jobe.2021.102364.
  • Arsie, I., A. Cricchio, C. Pianese, V. Ricciardi, and M. De Cesare. 2015. Modeling analysis of waste heat recovery via thermo-electric generator and electric turbo-compound for CO2 reduction in automotive SI engines. Energy Procedia 82:81–88. doi:10.1016/j.egypro.2015.11.886.
  • Asaduzzaman, M., H. Ali, N. A. Pratik, and N. Lubaba. 2023. Exhaust heat harvesting of automotive engine using thermoelectric generation technology. Energy Conversion and Management: X 19:100398. doi:10.1016/j.ecmx.2023.100398.
  • Bijukumar, B., A. K. Raam, V. Sukanya, N. Mukundan, and A. Al-Durra. 2023. Investigation on arrangement of thermoelectric modules based on exhaust gas flow direction to minimize mismatch power loss in TEG arrays. Applied Thermal Engineering 221:119853. doi:10.1016/j.applthermaleng.2022.119853.
  • Bose, J. R., S. Manova, L. G. Asirvatham, and S. Wongwises. 2021. Comprehensive case study on heat transfer enhancement using micro pore metal foams: From solar collectors to thermo electric generator applications. Case Studies in Thermal Engineering 27:101333. doi:10.1016/j.csite.2021.101333.
  • Burnete, N. V., F. Mariasiu, C. Depcik, I. Barabas, and D. Moldovanu. 2022. Review of thermoelectric generation for internal combustion engine waste heat recovery, Prog. Energy Combustion Science 91:101009. doi:10.1016/j.pecs.2022.101009.
  • Cheng, K., J. Qin, Y. Jiang, C. Lv, S. Zhang, and W. Bao. 2018. Performance assessment of multi-stage thermoelectric generators on hypersonic vehicles at a large temperature difference. Applied Thermal Engineering 130:1598–609. doi:10.1016/j.applthermaleng.2017.11.057.
  • Crane, D., C. Koripella, and V. Jovovic. 2012. Validating steady-state and transient modeling tools for high-power-density thermoelectric generators. Journal of Electronic Materials 41 (6):1524–34. doi:10.1007/s11664-012-1955-3.
  • Dolatiasl, K. 2019. Electric power generation using a thermoelectric generator from coolant fluid of internal combustion engine of Cars. Sigma Journal of Engineering and Natural Sciences 37:415–22.
  • Elghool, A., F. Basrawi, T. K. Ibrahim, H. Ibrahim, M. Ishak, M. Hazwan Bin Yusof, and S. A. Bagaber. 2020b. Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection. Energy 208:118270. doi:10.1016/j.energy.2020.118270.
  • Elghool, A., F. Basrawi, H. Ibrahim, T. K. Ibrahim, M. Ishak, T. M. Yusof, and S. A. Bagaber. 2020a. Enhancing the performance of a thermo-electric generator through multi-objective optimisation of heat pipes-heat sink under natural convection. Energy Conversion and Management 209:112626. doi:10.1016/j.enconman.2020.112626.
  • El Hage, H., M. Ramadan, H. Jaber, M. Khaled, and A. G. Olabi. 2020. A short review on the techniques of waste heat recovery from domestic applications. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 42 (24):3019–34. doi:10.1080/15567036.2019.1623940.
  • Ezzitouni, S., P. Fernández-Yáñez, L. Sánchez, and O. Armas. 2020. Global energy balance in a diesel engine with a thermoelectric generator. Applied Energy 269:115139. doi:10.1016/j.apenergy.2020.115139.
  • Ge, M., Z. Li, Y. Zhao, L. Xie, and S. Wang. 2021. Effect of exhaust parameters on performance of intermediate fluid thermoelectric generator. Case Studies in Thermal Engineering 28:101480. doi:10.1016/j.csite.2021.101480.
  • Gomaa, M. R., and H. Rezk. 2020. Passive cooling system for enhancement the energy conversion efficiency of thermo-electric generator. Energy Reports 6:687–92. doi:10.1016/j.egyr.2020.11.149.
  • He, M., E. Wang, Y. Zhang, W. Zhang, F. Zhang, and C. Zhao. 2020. Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine. Applied Energy 274:115298. doi:10.1016/j.apenergy.2020.115298.
  • Hewawasam, L. S., A. S. Jayasena, M. M. M. Afnan, R. A. C. P. Ranasinghe, and M. A. Wijewardane. 2020. Waste heat recovery from thermo-electric generators (TEGs). Energy Reports 6:474–79. doi:10.1016/j.egyr.2019.11.105.
  • Jaziri, N., A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail. 2020. A comprehensive review of thermoelectric generators: Technologies and common applications. Energy Reports 6:264–87. doi:10.1016/j.egyr.2019.12.011.
  • Jouhara, H., A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, B. Axcell, L. Wrobel, and S. Dai. 2021. Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids 9:9. doi:10.1016/j.ijft.2021.100063.
  • Kandi, R. P., M. M. Sudharmini, A. Suryan, and S. Nizetic. 2023. State of the art and future prospects for TEG-PCM systems: A review. Energy for Sustainable Development 73:328–48. doi:10.1016/j.esd.2023.04.012.
  • Kim, T. Y., J. Kwak, and K. B. Wook. 2019. Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions. Energy Conversion and Management 201:112150. doi:10.1016/j.enconman.2019.112150.
  • Krishna Kumar, T. S., S. Anil Kumar, K. Kodanda Ram, K. R. Goli, and V. Siva Prasad. 2020. Analysis of thermo electric generators in automobile applications. Materials Today: Proceedings 45:5835–39. doi:10.1016/j.matpr.2020.08.081.
  • Lan, S., A. Smith, R. Stobart, and R. Chen. 2019. Feasibility study on a vehicular thermoelectric generator for both waste heat recovery and engine oil warm-up. Applied Energy 242:273–84. doi:10.1016/j.apenergy.2019.03.056.
  • Li, W., M. C. Paul, J. Siviter, A. Montecucco, A. R. Knox, T. Sweet, G. Min, H. Baig, T. K. Mallick, G. Han, et al. 2016. Thermal performance of two heat exchangers for thermoelectric generators. Case Studies in Thermal Engineering 8:164–75. doi:10.1016/j.csite.2016.06.008.
  • Liu, X., Y. D. Deng, Z. Li, and C. Q. Su. 2015. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Conversion and Management 90:121–27. doi:10.1016/j.enconman.2014.11.015.
  • Luo, D., R. Wang, Y. Yan, W. Yu, and W. Zhou. 2021. Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery. Applied Energy 297:117151. doi:10.1016/j.apenergy.2021.117151.
  • Luo, D., R. Wang, W. Yu, and W. Zhou. 2020. Parametric study of a thermoelectric module used for both power generation and cooling. Renewable Energy 154:542–52. doi:10.1016/j.renene.2020.03.045.
  • Mamur, H., Ö. F. Dilmaç, J. Begum, and M. R. A. Bhuiyan. 2021. Thermoelectric generators act as renewable energy sources. Cleaner Materials 2:100030. doi:10.1016/j.clema.2021.100030.
  • Pacheco, N., F. P. Brito, R. Vieira, J. Martins, H. Barbosa, and L. M. Goncalves. 2020. Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy 197:117154. doi:10.1016/j.energy.2020.117154.
  • Pourkiaei, S. M., M. H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M. A. Pour Yazdi, and R. Kumar. 2019. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 186:115849. doi:10.1016/j.energy.2019.07.179.
  • Raut, P., and M. Vohra. 2022. Experimental investigation and comparative analysis of selected thermoelectric generators operating with automotive waste heat recovery module. Materials Today: Proceedings 50:994–98. doi:10.1016/j.matpr.2021.07.227.
  • Shaito, A., H. El, J. Faraj, M. Mortazavi, T. Lemenand, and M. Khaled. 2023. ScienceDirect Thermal modeling and parametric study of TEG power generation from the exhaust gas of boilers and cold oil tank. Energy Reports 9:51–58. doi:10.1016/j.egyr.2023.05.248.
  • Shen, Z. G., L. L. Tian, and X. Liu. 2019. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Conversion and Management 195:1138–73. doi:10.1016/j.enconman.2019.05.087.
  • Tang, Z. B., Y. D. Deng, C. Q. Su, W. W. Shuai, and C. J. Xie. 2015. A research on thermoelectric generator’s electrical performance under temperature mismatch conditions for automotive waste heat recovery system. Case Studies in Thermal Engineering 5:143–50. doi:10.1016/j.csite.2015.03.006.
  • Zhang, Y., M. Cleary, X. Wang, N. Kempf, L. Schoensee, J. Yang, G. Joshi, and L. Meda. 2015. High-tempera- ture and high-power-density nanostructured thermoelectric generator for auto- motive waste heat recovery. Energy Conversion & Management 105:946–50. doi:10.1016/j.enconman.2015.08.051.
  • Zhang, H. G., E. H. Wang, and B. Y. Fan. 2013. A performance analysis of a novel system of a dual loop bottoming organic Rankine cycle (ORC) with a light-duty diesel engine. Applied Energy 102:1504–13. doi:10.1016/j.apenergy.2012.09.018.
  • Zhao, Y., Y. Xie, X. Wang, Z. Li, T. Niu, and S. Liu. 2020. Energy balance analysis, combustion characteristics, and particulate number concentration-NOx trade-off of a heavy-duty diesel engine fueled with various PODEn/diesel blends. Energy Conversion and Management 225:113489. doi:10.1016/j.enconman.2020.113489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.