188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic and economic analyses of a spark-ignition engine operating with bioethanol-gasoline blends

, ORCID Icon, & ORCID Icon
Pages 10697-10719 | Received 21 Feb 2023, Accepted 07 Aug 2023, Published online: 23 Aug 2023

References

  • Abbasi, K. R., M. Shahbaz, J. Zhang, M. Irfan, and R. Alvarado. 2022. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renewable Energy 187:390–402. doi:10.1016/j.renene.2022.01.066.
  • ACEA. 2022. Motor vehicle production, by world region. The European Automobile Manufacturers. https://www.acea.auto/figure/motor-vehicle-production-by-world-region/
  • Ağbulut, Ü., F. Polat, and S. Sarıdemir. 2021. A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects. Energy 229:120548. doi:10.1016/j.energy.2021.120548.
  • Ağbulut, Ü., C. Uysal, E. J. Cavalcanti, M. Carvalho, M. Karagöz, and S. Saridemir. 2022. Exergy, exergoeconomic, life cycle, and exergoenvironmental assessments for an engine fueled by diesel–ethanol blends with aluminum oxide and titanium dioxide additive nanoparticles. Fuel 320:123861. doi:10.1016/j.fuel.2022.123861.
  • Aghbashlo, M., H. Rastegari, H. S. Ghaziaskar, H. Hosseinzadeh-Bandbafha, M. H. Nadian, and A. Shafizadeh, … M. Tabatabaei. 2022. Exergy, economic, and environmental assessment of ethanol dehydration to diesel fuel additive diethyl ether. Fuel 308:121918. doi:10.1016/j.fuel.2021.121918.
  • Aghbashlo, M., M. Tabatabaei, E. Khalife, T. R. Shojaei, and A. Dadak. 2018. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy 149:967–78. doi:10.1016/j.energy.2018.02.082.
  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, B. Khoshnevisan, M. A. Rajaeifar, and M. Pakzad. 2017. Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Conversion and Management 148:1–15. doi:10.1016/j.enconman.2017.05.048.
  • Agreement, P. 2015. Paris agreement. In Report of the conference of the parties to the united nations framework convention on climate change (21st Session, 2015: Paris). HeinOnline. Accessed December 4, 2017. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/intlm55§ion=46.
  • Amid, S., M. Aghbashlo, M. Tabatabaei, K. Karimi, A. S. Nizami, and M. Rehan, … S. S. Lam, M. Mojarab Soufiyan, W. Peng, S. S. Lam. 2021. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Conversion and Management 227:113637. doi:10.1016/j.enconman.2020.113637.
  • Arjoon, K. K., and J. G. Speight. 2021. Biofuels. Sustainable Solutions for Environmental Pollution: Waste Management and Value‐Added Products 1:163–98. doi:10.1002/9781119785439.ch4.
  • Atmaca, A., and R. Yumrutaş. 2014. Thermodynamic and exergoeconomic analysis of a cement plant: Part II–application. Energy Conversion and Management 79:799–808. doi:10.1016/j.enconman.2013.11.054.
  • Azhaganathan, G., and A. Bragadeshwaran. 2022. Critical review on recent progress of ethanol fuelled flex‐fuel engine characteristics. International Journal of Energy Research 46 (5):5646–77. doi:10.1002/er.7610.
  • Bhan, C., L. Verma, and J. Singh. 2020. Alternative fuels for sustainable development environmental concerns and sustainable development: Volume 1: Air. Water and Energy Resources 317–31. doi:10.1007/978-981-13-5889-0_16.
  • Bibra, E. M., E. Connelly, S. Dhir, M. Drtil, P. Henriot, I. Hwang, J. Le Marois, S. McBain, L. Paoli, and J. Teter. 2022. Global EV outlook 2022: Securing supplies for an electric future. https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf.
  • BP Statistical Review of World Energy. 2022. Bp Statistical Review of World Energy 2022, 71st ed. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
  • Buekens, A. 2012. Incineration Technologies. Encyclopedia of Sustainability Science and Technology 5235–96. doi:10.1007/978-1-4419-0851-3_92.
  • Cabrera-Jiménez, R., J. M. Mateo-Sanz, J. Gavaldà, L. Jiménez, and C. Pozo. 2022. Comparing biofuels through the lens of sustainability: A data envelopment analysis approach. Applied Energy 307:118201. doi:10.1016/j.apenergy.2021.118201.
  • Çakmak, A., M. Kapusuz, and H. Özcan. 2020. Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 45 (1):1–16. doi:10.1080/15567036.2020.1736216.
  • Cavalcanti, E. J., M. Carvalho, and A. A. Ochoa. 2019. Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads. Energy Conversion and Management 183:450–61. doi:10.1016/j.enconman.2018.12.113.
  • Cavalcanti, E. J., D. R. da Silva, and M. Carvalho. 2022. Life cycle and exergoenvironmental analyses of ethanol: Performance of a flex-fuel spark-ignition engine at wide-open throttle conditions. Energies 15 (4):1422. doi:10.3390/en15041422.
  • Costa, R. C., and J. R. Sodré. 2011. Compression ratio effects on an ethanol/gasoline fuelled engine performance. Applied Thermal Engineering 31 (2–3):278–83. doi:10.1016/j.applthermaleng.2010.09.007.
  • Das, A. K., D. Hansdah, and A. K. Panda. 2021. Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives. Energy 229:120629. doi:10.1016/j.energy.2021.120629.
  • De Souza, L. L. P., E. E. S. Lora, J. C. E. Palacio, M. H. Rocha, M. L. G. Renó, and O. J. Venturini. 2018. Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production 203:444–68. doi:10.1016/j.jclepro.2018.08.236.
  • Doğan, B., A. Cakmak, M. K. Yesilyurt, and D. Erol. 2020. Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses. Fuel 275:117973. doi:10.1016/j.fuel.2020.117973.
  • Doğan, B., D. Erol, and E. Kodanlı. 2020. The investigation of exergoeconomic, sustainability and environmental analyses in an SI engine fuelled with different ethanol-gasoline blends. International Journal of Exergy 32 (4):412–36. doi:10.1504/IJEX.2020.108949.
  • Doğan, B., D. Erol, and S. Üstün. 2023. The investigation of environmental behaviors by energy and exergy analyses using gasoline/ethanol fuel blends. Journal of Thermal Analysis and Calorimetry 148 (14):1–18. doi:10.1007/s10973-023-12186-1.
  • Doğan, B., D. Erol, H. Yaman, and E. Kodanli. 2017. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering 120:433–43. doi:10.1016/j.applthermaleng.2017.04.012.
  • Doğan, B., S. Özer, and D. Erol. 2022. Exergy, exergoeconomic, and exergoenviroeconomic evaluations of the use of diesel/fusel oil blends in compression ignition engines. Sustainable Energy Technologies and Assessments 53:102475. doi:10.1016/j.seta.2022.102475.
  • Doğan, B., M. K. Yeşilyurt, D. Erol, and A. Çakmak. 2020. A study toward analyzing the energy, exergy and sustainability index based on performance and exhaust emission characteristics of a spark-ignition engine fuelled with the binary blends of gasoline and methanol or ethanol. International Journal of Engineering Research and Development 12 (2):529–48. doi:10.29137/umagd.728802.
  • Erol, D., M. K. Yeşilyurt, H. Yaman, and B. Doğan. 2023. Evaluation of the use of diesel-biodiesel-hexanol fuel blends in diesel engines with exergy analysis and sustainability index. Fuel 337:126892. doi:10.1016/j.fuel.2022.126892.
  • Holman, J. P. 2021. Experimental methods for engineers. 8th ed ed. New York, USA: McGraw-Hill.
  • IEA. 2020. Global biofuel production in 2019 and forecast to 2025. https://www.iea.org/data-and-statistics/charts/global-biofuel-production-in-2019-and-forecast-to-2025.
  • IEA. 2021. Biofuels. https://www.iea.org/reports/renewables-2021/biofuels?mode=transport®ion=World&publication=2021&flow=Consumption&product=Ethanol.
  • Iodice, P., A. Amoresano, and G. Langella. 2021. A review on the effects of ethanol/gasoline fuel blends on NOX emissions in spark-ignition engines. Biofuel Research Journal 8 (4):1465–80. doi:10.18331/BRJ2021.8.4.2.
  • Jahanbakhshi, A., S. Karami-Boozhani, M. Yousefi, and J. B. Ooi. 2021. Performance of bioethanol and diesel fuel by thermodynamic simulation of the miller cycle in the diesel engine. Results in Engineering 12:100279. doi:10.1016/j.rineng.2021.100279.
  • Jhang, S. R., Y. C. Lin, K. S. Chen, S. L. Lin, and S. Batterman. 2020. Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen. Energy 209:118436. doi:10.1016/j.energy.2020.118436.
  • Karagoz, M., C. Uysal, U. Agbulut, and S. Saridemir. 2020. Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil− diesel blends. Journal of Cleaner Production 264:121724. doi:10.1016/j.jclepro.2020.121724.
  • Kavitha, K. R., J. Jayaprabakar, and A. Prabhu. 2022. Exergy and energy analyses on biodiesel–diesel-ethanol blends in a diesel engine. International Journal of Ambient Energy 43 (1):778–82. doi:10.1080/01430750.2019.1670261.
  • Khaliq, A., S. Islam, and I. Dincer. 2019. Energy and exergy analyses of a HCCI engine-based system running on hydrogen enriched wet-ethanol fuel. International Journal of Exergy 28 (1):72–95. doi:10.1504/IJEX.2019.097272.
  • Kiani, M. K. D., S. Rostami, M. Eslami, T. Yusaf, and S. Sendilvelan. 2018. The effect of inlet temperature and spark timing on thermo-mechanical, chemical and the total exergy of an SI engine using bioethanol-gasoline blends. Energy Conversion and Management 165:344–53. doi:10.1016/j.enconman.2018.03.066.
  • Kul, B. S., and M. Ciniviz. 2020. Assessment of waste bread bioethanol-gasoline blends in respect to combustion analysis, engine performance and exhaust emissions of a SI engine. Fuel 277:118237. doi:10.1016/j.fuel.2020.118237.
  • Kul, B. S., and M. Ciniviz. 2021. An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends. Fuel 286:119375. doi:10.1016/j.fuel.2020.119375.
  • Lanzanova, T. D. M., M. Dalla Nora, and H. Zhao. 2016. Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol. Applied Energy 169:230–39. doi:10.1016/j.apenergy.2016.02.016.
  • Liu, S., H. Zhang, Q. Fan, W. Wang, Y. Qi, and Z. Wang. 2022. Investigation of combustion and particle number (PN) emissions in a spark induced compression ignition (SICI) engine for ethanol-gasoline blends. Fuel 316:123155. doi:10.1016/j.fuel.2022.123155.
  • Mohapatra, S., R. C. Ray, and S. Ramachandran. 2019. Bioethanol from biorenewable feedstocks: Technology, economics, and challenges. In Bioethanol Production from Food Crops 3–27. Academic Press. doi:10.1016/B978-0-12-813766-6.00001-1.
  • Moran, M. J., H. N. Shapiro, D. D. Boettner, and M. B. Bailey. 2010. Fundamentals of engineering thermodynamics. United States of America: John Wiley & Sons.
  • Odibi, C., M. Babaie, A. Zare, M. N. Nabi, T. A. Bodisco, and R. J. Brown. 2019. Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin. Energy Conversion and Management 198:111912. doi:10.1016/j.enconman.2019.111912.
  • Özcan, H., and A. Çakmak. 2018. Comparative exergy analysis of fuel additives containing oxygen and HC based in a spark-ignition (SI) engine. International Journal of Automotive Engineering and Technologies 7 (3):124–33. doi:10.18245/ijaet.486410.
  • Qi, D. H., X. Q. Ding, W. B. Zhao, and K. Yang. 2019. Spray characteristics and engine performance of vegetable oil–diesel–ethanol hybrid fuel. Journal of Energy Engineering 145 (4):04019011. doi:10.1061/(ASCE)EY.1943-7897.0000606.
  • Rangasamy, M., G. Duraisamy, and N. Govindan. 2020. A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine. Fuel 277:118167. doi:10.1016/j.fuel.2020.118167.
  • Rostami, S., M. K. D. Kiani, M. Eslami, and B. Ghobadian. 2017. The effect of throttle valve positions on thermodynamic second law efficiency and availability of SI engine using bioethanol-gasoline blends. Renewable Energy 103:208–16. doi:10.1016/j.renene.2016.11.033.
  • Rufino, C. H., A. J. de Lima, A. P. Mattos, F. U. Allah, J. L. Bernal, J. V. Ferreira, and W. L. Gallo. 2019. Exergetic analysis of a spark ignition engine fuelled with ethanol. Energy Conversion and Management 192:20–29. doi:10.1016/j.enconman.2019.04.035.
  • Sanli, B. G., M. Özcanli, and H. Serin. 2020. Assessment of thermodynamic performance of an IC engine using microalgae biodiesel at various ambient temperatures. Fuel 277:118108. doi:10.1016/j.fuel.2020.118108.
  • Şanli, B. G., and E. Uludamar. 2020. Energy and exergy analysis of a diesel engine fuelled with diesel and biodiesel fuels at various engine speeds. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 42 (11):1299–313. doi:10.1080/15567036.2019.1635229.
  • Santos, N. D. S. A., V. R. Roso, A. C. T. Malaquias, and J. G. C. Baeta. 2021. Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renewable and Sustainable Energy Reviews 148:111292. doi:10.1016/j.rser.2021.111292.
  • Sarıkoç, S., İ. Örs, and S. Ünalan. 2020. An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. Fuel 268:117321. doi:10.1016/j.fuel.2020.117321.
  • Sinha, A. A., T. Choudhary, M. Z. Ansari. 2023. Estimation of exergy-based sustainability index and performance evaluation of a novel intercooled hybrid gas turbine system. International Journal of Hydrogen Energy 48 (23):8629–44. doi:10.1016/j.ijhydene.2022.10.260.
  • Thakur, A. K., A. K. Kaviti, R. Mehra, and K. K. S. Mer. 2017. Progress in performance analysis of ethanol-gasoline blends on SI engine. Renewable and Sustainable Energy Reviews 69:324–40. doi:10.1016/j.rser.2016.11.056.
  • UNFPA. 2023. World population, https://www.unfpa.org/8billion
  • Uysal, C., Ü. Ağbulut, E. Elibol, T. Demirci, M. Karagoz, and S. Saridemir. 2022. Exergetic, exergoeconomic, and sustainability analyses of diesel–biodiesel fuel blends including synthesized graphene oxide nanoparticles. Fuel 327:125167. doi:10.1016/j.fuel.2022.125167.
  • Veza, I., A. Afzal, M. A. Mujtaba, A. T. Hoang, D. Balasubramanian, and M. Sekar, … N. Tamaldin, M. E. M. Soudagar, A. I. EL-Seesy, D. W. Djamari. 2022. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Engineering Journal 61 (11):8363–91. doi:10.1016/j.aej.2022.01.072.
  • Veza, I., A. D. Karaoglan, E. Ileri, S. A. Kaulani, N. Tamaldin, and Z. A. Latiff, … M. Muhamad Said, A. T. Hoang, K. V. Yatish, M. Idris. 2022. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Studies in Thermal Engineering 31:101817. doi:10.1016/j.csite.2022.101817.
  • Yaman, H. 2022. Investigation of the effect of compression ratio on the energetic and exergetic performance of a CI engine operating with safflower oil methyl ester. Process Safety and Environmental Protection 158:607–24. doi:10.1016/j.psep.2021.12.014.
  • Yaqoob, H., Y. H. Teoh, F. Sher, M. A. Jamil, M. Ali, Ü. Ağbulut, H. A. Salam, M. Arslan, M. E. M. Soudagar, M. A. Mujtaba, et al. 2022. Energy, exergy, sustainability and economic analysis of waste tire pyrolysis oil blends with different nanoparticle additives in spark ignition engine. Energy 251:123697. doi:10.1016/j.energy.2022.123697.
  • Yesilyurt, M. K. 2020. The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel 278:118319. doi:10.1016/j.fuel.2020.118319.
  • Yesilyurt, M. K., B. Dogan, and A. Cakmak. 2023. Research on the usability of various oxygenated fuel additives in a spark-ignition engine considering thermodynamic and economic analyses. Biofuels 1–17. doi:10.1080/17597269.2023.2191386.
  • Yildiz, I., H. Caliskan, and K. Mori. 2021. Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter. Journal of Thermal Analysis and Calorimetry 145 (3):739–50. doi:10.1007/s10973-020-10143-w.
  • Yoon, S. H., and C. S. Lee. 2012. Effect of undiluted bioethanol on combustion and emissions reduction in a SI engine at various charge air conditions. Fuel 97:887–90. doi:10.1016/j.fuel.2012.02.001.
  • Zapata-Mina, J., A. Restrepo, C. Romero, and H. Quintero. 2020. Exergy analysis of a diesel engine converted to spark ignition operating with diesel, ethanol, and gasoline/ethanol blends. Sustainable Energy Technologies and Assessments 42:100803. doi:10.1016/j.seta.2020.100803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.