120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrothermal liquefaction of freshwater microalgae biomass using Fe3O4 nanoparticle as a catalyst

, , , ORCID Icon, , , , & ORCID Icon show all
Pages 12988-13000 | Received 24 Aug 2023, Accepted 27 Oct 2023, Published online: 16 Nov 2023

References

  • Ağbulut, U., R. Sirohi, E. Lichtfouse, W. H. Chen, C. Len, P. L. Show, A. T. Hoang, X. P. Nguyen, and A. T. Hoang. 2023. Microalgae bio-oil production through pyrolysis and hydrothermal liquefaction: Mechanism and characteristics. Bioresource Technology 376:128860. doi:10.1016/j.biortech.2023.128860.
  • Amalina, F., A. S. Abd Razak, S. Krishnan, H. Sulaiman, A. W. Zularisam, and M. Nasrullah. 2022. Biochar production techniques utilizing biomass waste-derived materials and environmental applications–A review. Journal of Hazardous Materials Advances 7:100134. doi:10.1016/j.hazadv.2022.100134.
  • Bhattacharya, M., and S. Goswami. 2020. Microalgae–A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology 25:101580. doi:10.1016/j.bcab.2020.101580.
  • Carpio, R. B., Y. Zhang, C. T. Kuo, W. T. Chen, L. C. Schideman, and R. de Leon. 2021. Effects of reaction temperature and reaction time on the hydrothermal liquefaction of demineralized wastewater algal biomass. Bioresource Technology Reports 14:100679. doi:10.1016/j.biteb.2021.100679.
  • Chan, S. S., S. S. Low, K. W. Chew, T. C. Ling, J. Rinklebe, J. C. Juan, P. L. Show, and P. L. Show. 2022. Prospects and environmental sustainability of phyconanotechnology: A review on algae-mediated metal nanoparticles synthesis and mechanism. Environmental Research 212:113140. doi:10.1016/j.envres.2022.113140.
  • Chia, S. R., H. C. Ong, K. W. Chew, P. L. Show, S. M. Phang, T. C. Ling, D. Nagarajan, D. J. Lee, and J. S. Chang. 2018. Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy 129:838–52. doi:10.1016/j.renene.2017.04.001.
  • Dey, S., N. M. Reang, P. K. Das, and M. Deb. 2021. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production 286:124981. doi:10.1016/j.jclepro.2020.124981.
  • Duman, F., U. Sahin, and A. E. Atabani. 2019. Harvesting of blooming microalgae using green synthetized magnetic maghemite (γ-Fe2O3) nanoparticles for biofuel production. Fuel 256:115935. doi:10.1016/j.fuel.2019.115935.
  • Egesa, D., C. J. Chuck, and P. Plucinski. 2018. Multifunctional role of magnetic nanoparticles in efficient microalgae separation and catalytic hydrothermal liquefaction. ACS Sustainable Chemistry & Engineering 6 (1):991–99. doi:10.1021/acssuschemeng.7b03328.
  • Gao, F. 2019. An overview of surface-functionalized magnetic nanoparticles: Preparation and application for wastewater treatment. ChemistrySelect 4 (22):6805–11. doi:10.1002/slct.201900701.
  • Gerulová, K., A. Kucmanová, Z. Sanny, Z. Garaiová, E. Seiler, M. Čaplovičová, M. M. Palcut, and M. Palcut. 2022. Fe3O4-PEI nanocomposites for magnetic harvesting of Chlorella vulgaris Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides. Nanomaterials 12 (11):1786. doi:10.3390/nano12111786.
  • Ge, S. W., X. Y. Wang, T. Chang, B. Chen, P. Hu, F. F. Yang, K. S. Wang, F. Yang, L. Kang, and K.-S. Wang. 2023. Fe3O4 nanoparticles synthesized by one-step reduction with nanoscale size-dependent magnetic properties. Journal of Sol-Gel Science and Technology 105 (1):98–105. doi:10.1007/s10971-022-05962-2.
  • Ghosh, N., S. Sen, G. Biswas, A. Saxena, and P. K. Haldar. 2023. Adsorption and desorption study of reusable magnetic iron oxide nanoparticles modified with justicia adhatoda leaf extract for the removal of textile dye and antibiotic. Water, Air, & Soil Pollution 234 (3):202. doi:10.1007/s11270-023-06217-8.
  • Jaiswal, K. K., I. Banerjee, and V. P. Mayookha. 2021. Recent trends in the development and diversification of sericulture natural products for innovative and sustainable applications. Bioresource Technology Reports 13:100614. doi:10.1016/j.biteb.2020.100614.
  • Jaiswal, K. K., V. Kumar, R. Verma, M. Verma, A. Kumar, M. S. Vlaskin, M. Nanda, and H. Kim. 2021. Graphitic biochar and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. Journal of Hazardous Materials 409:124987. doi:10.1016/j.jhazmat.2020.124987.
  • Jaiswal, K. K., V. Kumar, M. S. Vlaskin, and M. Nanda. 2020. Impact of glyphosate herbicide stress on metabolic growth and lipid inducement in Chlorella sorokiniana UUIND6 for biodiesel production. Algal Research 51:102071. doi:10.1016/j.algal.2020.102071.
  • Jaiswal, K. K., D. Manikandan, R. Murugan, and A. P. Ramaswamy. 2018. Microwave-assisted rapid synthesis of Fe3O4/poly (styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. European Polymer Journal 98:177–90. doi:10.1016/j.eurpolymj.2017.11.005.
  • Jaiswal, K. K., V. V. Pathak, and A. P. Ramaswamy. 2022. Magnetic harvesting of microalgae biomass for cost-effective algal biofuel production. In Algal Biofuel, edited by R. Kothari, V. V. Pathak, and V. V. Tyagi, 139–48. London: CRC Press.
  • Jayakumar, M., K. B. Gebeyehu, L. D. Abo, A. W. Tadesse, B. Vivekanandan, V. P. Sundramurthy, G. Baskar, V. Ashokkumar, and G. Baskar. 2023. A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges. Fuel 349:128690. doi:10.1016/j.fuel.2023.128690.
  • Kandasamy, S., B. Zhang, Z. He, H. Chen, H. Feng, Q. Wang, M. Krishnamoorthi, N. Bhuvanendran, S. Esakkimuthu, V. Ashokkumar, et al. 2019. Hydrothermal liquefaction of microalgae using Fe3O4 nanostructures as efficient catalyst for the production of bio-oil: Optimization of reaction parameters by response surface methodology. Biomass & bioenergy 131:105417. doi:10.1016/j.biombioe.2019.105417.
  • Krasitskaya, V. V., A. N. Kudryavtsev, R. N. Yaroslavtsev, D. A. Velikanov, O. A. Bayukov, Y. V. Gerasimova, L. A. Frank, and L. A. Frank. 2022. Starch-coated magnetic iron oxide nanoparticles for affinity purification of recombinant proteins. International Journal of Molecular Sciences 23 (10):5410. doi:10.3390/ijms23105410.
  • Kumar, N., C. Banerjee, S. Negi, and P. Shukla. 2023. Microalgae harvesting techniques: Updates and recent technological interventions. Critical Reviews in Biotechnology 43 (3):342–68. doi:10.1080/07388551.2022.2031089.
  • Kumar, V., S. Kumar, P. K. Chauhan, M. Verma, V. Bahuguna, H. C. Joshi, W. Ahmad, P. Negi, N. Sharma, B. Ramola, et al. 2019. Low-temperature catalyst based hydrothermal liquefaction of harmful macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Scientific Reports 9 (1):11384. doi:10.1038/s41598-019-47664-w.
  • Kumar, S., M. Kumar, and A. Singh. 2021. Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): A brief review. Contemporary Physics 62 (3):144–64. doi:10.1080/00107514.2022.2080910.
  • Li, H., J. Chen, W. Zhang, H. Zhan, C. He, Z. Yang, L. L. Leng, and L. Leng. 2023. Machine-learning-aided thermochemical treatment of biomass: A review. Biofuel Research Journal 10 (1):1786–809. doi:10.18331/BRJ2023.10.1.4.
  • Mahima, J., R. K. Sundaresh, K. P. Gopinath, P. S. S. Rajan, J. Arun, S. H. Kim, and A. Pugazhendhi. 2021. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. Science of the Total Environment 778:146262. doi:10.1016/j.scitotenv.2021.146262.
  • Markeb, A. A., J. Llimós-Turet, I. Ferrer, P. Blánquez, A. Alonso, A. Sánchez, J. Moral-Vico, and X. Font. 2019. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Research 159:490–500. doi:10.1016/j.watres.2019.05.023.
  • Nanda, M., K. K. Jaiswal, V. Kumar, M. S. Vlaskin, P. Gautam, V. Bahuguna, and P. K. Chauhan. 2021. Micro-pollutant Pb (II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6. Environmental Technology & Innovation 23:101613. doi:10.1016/j.eti.2021.101613.
  • Ni, X., J. Zhang, L. Zhao, F. Wang, H. He, and P. Dramou. 2022. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. Journal of Physics and Chemistry of Solids 169:110855. doi:10.1016/j.jpcs.2022.110855.
  • Qi, J., H. Lan, R. Liu, H. Liu, and J. Qu. 2020. Efficient Microcystis aeruginosa removal by moderate photocatalysis-enhanced coagulation with magnetic zn-doped Fe3O4 particles. Water Research 171:115448. doi:10.1016/j.watres.2019.115448.
  • Ravichandran, S. R., C. D. Venkatachalam, M. Sengottian, S. Sekar, S. Kandasamy, K. P. R. Subramanian, M. Narayanan, A. Lavanya Chandrasekaran, and M. Narayanan. 2022. A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications. Fuel 313:122679. doi:10.1016/j.fuel.2021.122679.
  • Ren, H., J. Ni, M. Shen, D. Zhou, F. Sun, and P. L. Show. 2023. Enhanced carbon dioxide fixation of chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles. Bioresource Technology 382:129176. doi:10.1016/j.biortech.2023.129176.
  • Rojas-Pérez, A., D. Diaz-Diestra, C. B. Frias-Flores, J. Beltran-Huarac, K. C. Das, B. R. Weiner, G. Morell, and L. M. Díaz-Vázquez. 2015. Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process. Nanoscale 7 (42):17664–71. doi:10.1039/C5NR04404A.
  • Saravanan, A., P. S. Kumar, M. Badawi, G. Mohanakrishna, and T. M. Aminabhavi. 2023. Valorization of micro-algae biomass for the development of green biorefinery: Perspectives on techno-economic analysis and the way towards sustainability. Chem Eng J 453:139754. doi:10.1016/j.cej.2022.139754.
  • Scarsella, M., B. de Caprariis, M. Damizia, and P. De Filippis. 2020. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy 140:105662. doi:10.1016/j.biombioe.2020.105662.
  • Shafizadeh, A., H. Shahbeig, M. H. Nadian, H. Mobli, M. Dowlati, V. K. Gupta, W. Peng, S. S. Lam, M. Tabatabaei, and M. Aghbashlo. 2022. Machine learning predicts and optimizes hydrothermal liquefaction of biomass. Chem Eng J 445:136579. doi:10.1016/j.cej.2022.136579.
  • Shah, A. A., K. Sharma, M. S. Haider, S. S. Toor, L. A. Rosendahl, T. H. Pedersen, and D. Castello. 2022. The role of catalysts in biomass hydrothermal liquefaction and biocrude upgrading. Processes 10 (2):207. doi:10.3390/pr10020207.
  • Sharma, N., K. K. Jaiswal, V. Kumar, M. S. Vlaskin, M. Nanda, I. Rautela, M. S. Tomar, and W. Ahmad. 2021. Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review. Renewable Energy 174:810–22. doi:10.1016/j.renene.2021.04.147.
  • Taghizadeh, S. M., A. Berenjian, K. W. Chew, P. L. Show, H. F. Mohd Zaid, H. Ramezani, Y. Ghasemi, M. J. Raee, and A. Ebrahiminezhad. 2020. Impact of magnetic immobilization on the cell physiology of green unicellular algae Chlorella vulgaris. Bioengineered 11 (1):141–53. doi:10.1080/21655979.2020.1718477.
  • Tong, C. Y., Y. S. Chang, B. S. Ooi, and D. J. C. Chan. 2021. Physico-chemistry and adhesion kinetics of algal biofilm on polyethersulfone (PES) membrane with different surface wettability. Journal of Environmental Chemical Engineering 9 (6):106531. doi:10.1016/j.jece.2021.106531.
  • Vickram, S., S. Manikandan, S. R. Deena, J. Mundike, R. Subbaiya, N. Karmegam, M. K. Awasthi, K. Kumar Yadav, S. W. Chang, B. Ravindran, et al. 2023. Advanced biofuel production, policy and technological implementation of nano-additives for sustainable environmental management–A critical review. Bioresource Technology 387:129660. doi:10.1016/j.biortech.2023.129660.
  • Wu, Y., H. Wang, H. Li, X. Han, M. Zhang, Y. Sun, X. Xu, R. Tu, Y. Zeng, C. C. Xu, et al. 2022. Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review. Renewable Energy 196:462–81. doi:10.1016/j.renene.2022.07.031.
  • Yang, Z., J. Hou, Z. Pan, M. Wu, M. Zhang, J. Wu, and L. Miao. 2022. A innovative stepwise strategy using magnetic Fe3O4-co-graft tannin/polyethyleneimine composites in a coupled process of sulfate radical-advanced oxidation processes to control harmful algal blooms. Journal of Hazardous Materials 439:129485. doi:10.1016/j.jhazmat.2022.129485.
  • Zhang, C., J. Zeng, L. Lin, Y. Peng, X. Li, and X. Gong. 2023. Microalgae liquefaction in ethanol to produce high-quality fuels: Effect of magnetic nanoparticles on nitrogen transformation. Fuel Processing Technology 241:107587. doi:10.1016/j.fuproc.2022.107587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.