90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical analyses on the feasibility of TC type nozzles in ocean thermal energy Conversion turbines

, , , , , & show all
Pages 91-110 | Received 01 Jun 2023, Accepted 31 Oct 2023, Published online: 17 Nov 2023

References

  • Bekiloğlu, H. E., H. Bedir, and G. Anlaş. 2019. Multi-objective optimization of ORC parameters and selection of working fluid using Preliminary radial inflow turbine design. Energy Conversion and Management 183 (March):833–47. doi:10.1016/j.enconman.2018.12.039.
  • Chen, J. H. 2012. Aerodynamic performance optimization and aerodynamic design of centripetal turbine. Heilongjiang: Harbin Engineering University.
  • Cheng, Z., S. Tong, and Z. Tong. 2019. Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Conversion and Management 181 (February):485–500. doi:10.1016/j.enconman.2018.12.014.
  • Chen, Y., Y. Liu, W. Yang, Y. Wang, L. Zhang, and Y. Wu. 2021. Research on optimization and verification of the number of stator blades of KW ammonia working medium radial flow turbine in ocean thermal energy Conversion. Journal of Marine Science and Engineering 9 (8):901. doi:10.3390/jmse9080901.
  • Giostri, A., A. Romei, and M. Binotti. 2021. Off-design performance of closed OTEC cycles for power generation. Renewable Energy 170 (June):1353–66. doi:10.1016/j.renene.2021.02.047.
  • Gribin, V. G., A. A. Tishchenko, R. A. Alekseev, V. A. Tishchenko, I. Yu Gavrilov, and V. V. Popov. 2020. Application of the parametric method for profiling the interblade channels in the nozzle cascades of axial-flow turbine machines. Thermal Engineering 67 (8):536–42. doi:10.1134/S0040601520080029.
  • Hernández-Romero, I. M., F. Nápoles-Rivera, A. Flores-Tlacuahuac, and L. Fabián Fuentes-Cortés. 2020. Optimal design of the ocean thermal energy conversion systems involving weather and energy demand variations. Chemical Engineering & Processing - Process Intensification 157 (November):108114. doi:10.1016/j.cep.2020.108114.
  • Islam, S. M., T. Khan, and Z. U. Ahmed. “Effect of design parameters on flow characteristics of an aerodynamic swirl nozzle.”
  • Jankowski, M., P. Klonowicz, and A. Borsukiewicz. 2021. Multi-objective optimization of an ORC power plant using one-dimensional design of a radial-Inflow turbine with backswept rotor blades. Energy 237 (December):121506. doi:10.1016/j.energy.2021.121506.
  • Ji, G. H. 1982. Turbine expander (revised). Beijing: China Machine Press.
  • Jubori Ayad M, A., R. Al-Dadah, and S. Mahmoud. 2017. Performance enhancement of a small-scale organic Rankine Cycle radial-inflow turbine through Multi-objective optimization algorithm. Energy 131 (July):297–311. doi:10.1016/j.energy.2017.05.022.
  • Kim, D.-Y., and Y.-T. Kim. 2017. Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy Conversion. Renewable Energy 106 (June):255–63. doi:10.1016/j.renene.2017.01.038.
  • Kim, J.-S., and D.-Y. Kim. 2020. Preliminary design and off-design analysis of a radial outflow turbine for organic Rankine cycles. Energies 13 (8):2118. doi:10.3390/en13082118.
  • Kumar, M., D. Panda, S. K. Behera, and R. K. Sahoo. 2019. Experimental investigation and performance prediction of a cryogenic turboexpander using artificial intelligence techniques. Applied Thermal Engineering 162 (November):114273. doi:10.1016/j.applthermaleng.2019.114273.
  • Li, P., Z. Han, X. Jia, Z. Mei, and X. Han. 2018. Analysis of the effects of blade installation angle and blade number on radial-inflow turbine stator flow performance. Energies 11 (9):2258. doi:10.3390/en11092258.
  • Marelli, S., and M. Capobianco. 2011. Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application. Energy 36 (1):459–65. doi:10.1016/j.energy.2010.10.019.
  • Ma, Q., Y. Zheng, H. Lu, J. Li, S. Wang, C. Wang, Z. Wu, Y. Shen, and X. Liu. 2022. A novel ocean thermal energy driven system for sustainable power and fresh water supply. Membranes 12 (2):160. doi:10.3390/membranes12020160.
  • Minasyan, A., J. Bradshaw, and A. Pesyridis. 2018. Design and performance evaluation of an axial inflow turbocharger turbine. Energies 11 (2):278. doi:10.3390/en11020278.
  • Quan, Y., J. Liu, C. Zhang, J. Wen, G. Xu, and B. Dong. 2020. Aerodynamic design of an axial impulse turbine for the high-temperature organic rankine cycle. Applied Thermal Engineering 167 (February):114708. doi:10.1016/j.applthermaleng.2019.114708.
  • Shao, L., J. Zhu, X. Meng, X. Wei, and X. Ma. 2017. Experimental study of an organic Rankine Cycle System with radial inflow turbine and R123. Applied Thermal Engineering 124 (September):940–47. doi:10.1016/j.applthermaleng.2017.06.042.
  • Song, Y. 2019. A study of OTEC application on deep-sea FPSOs. Journal of Marine Science and Technology 24 (2):466–78. doi:10.1007/s00773-018-0567-x.
  • Sundararaj, R. H., T. Chandra Sekar, R. Arora, and A. Kushari. 2021. Effect of nozzle exit area on the performance of a turbojet engine. Aerospace Science and Technology 116 (September):106844. doi:10.1016/j.ast.2021.106844.
  • Tong, Z., Z. Cheng, and S. Tong. 2019. Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies 12 (13):2550. doi:10.3390/en12132550.
  • Wang, Y. M. 2013. Course design basis of steam turbine principles. Beijing: China Electric Power Press.
  • Wu, Z., H. Feng, L. Chen, Z. Xie, C. Cai, and S. Xia. 2019. Optimal design of dual-pressure turbine in OTEC system based on constructal theory. Energy Conversion and Management 201 (December):112179. doi:10.1016/j.enconman.2019.112179.
  • Xia, J., J. Wang, H. Wang, and Y. Dai. 2018. Three-dimensional performance analysis of a radial-inflow turbine for an organic rankine cycle driven by low grade heat source. Energy Conversion and Management 169 (August):22–33. doi:10.1016/j.enconman.2018.05.038.
  • Zhang, J., X. Zhai, and S. Li. 2020. Numerical studies on the performance of ammonia ejectors used in ocean thermal energy Conversion System. Renewable Energy 161 (December):766–76. doi:10.1016/j.renene.2020.07.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.