61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel separator material derived from discarded disposable medical mask waste for supercapacitor applications

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 5497-5507 | Received 01 May 2023, Accepted 28 Mar 2024, Published online: 10 Apr 2024

References

  • Ali, G. A. M., S. Supriya, K. F. Chong, E. R. Shaaban, H. Algarni, T. Maiyalagan, and G. Hegde. 2021. Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: A conversion of Allium cepa peel to energy storage system. Biomass Conversion and Biorefinery 11 (4):1311–23. doi:10.1007/s13399-019-00520-3.
  • Cheng, J., S. C. Hu, G. T. Sun, K. Kang, M. Q. Zhu, and Z. C. Geng. 2021. Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application. Energy 215:119144. doi:10.1016/j.energy.2020.119144.
  • Conway, B. E. 1999. Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers. doi:10.1017/CBO9781107415324.004.
  • Ding, Y., Y. Li, Y. Dai, X. Han, B. Xing, L. Zhu, K. Qiu, and S. Wang. 2021. A novel approach for preparing in-situ nitrogen doped carbon via pyrolysis of bean pulp for supercapacitors. Energy 216:119227. doi:10.1016/j.energy.2020.119227.
  • El Ouahabi, H., A. Elmouwahidi, L. Cano-Casanova, M. Á. Lillo-Ródenas, M. C. Roman-Martínez, A. F. Pérez-Cadenas, E. Bailón-García, M. Shaban, G. M. Al-Senani, M. Ouzzine, et al. 2024. From nutshells to energy cells: Pioneering supercapacitor electrodes via innovative argan nutshell activated carbon synthesis. Journal of Energy Storage 82:110598. doi:10.1016/j.est.2024.110598.
  • Elanthamilan, E., S. J. Jennifer, S. F. Wang, and J. P. Merlin. 2022. Effective conversion of cassia fistula dry fruits biomass into porous activated carbon for supercapacitors. Materials Chemistry and Physics 286 (February):126188. doi:10.1016/j.matchemphys.2022.126188.
  • Feng, T., S. Wang, Y. Hua, P. Zhou, G. Liu, K. Ji, Z. Lin, S. Shi, X. Jiang, and R. Zhang. 2021. Synthesis of biomass-derived N,O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. Journal of Energy Storage 44 (PA):103286. doi:10.1016/j.est.2021.103286.
  • Gao, Z., N. Song, Y. Zhang, Y. Schwab, J. He, and X. Li. 2018. Carbon nanotubes derived from yeast-fermented wheat flour and their energy storage application. ACS Sustainable Chemistry and Engineering 6 (9):11386–96. doi:10.1021/acssuschemeng.8b01292.
  • Gür, E., T. G. Semerci, and F. Semerci. 2022. Sugar beet pulp derived oxygen-rich porous carbons for supercapacitor applications. Journal of Energy Storage 51 (February):104363. doi:10.1016/j.est.2022.104363.
  • Jalalah, M., S. S. Sivasubramaniam, B. Aljafari, M. Irfan, S. S. Almasabi, T. Alsuwian, M. I. Khazi, A. K. Nayak, and F. A. Harraz. 2022. Biowaste assisted preparation of self-nitrogen-doped nanoflakes carbon framework for highly efficient solid-state supercapacitor application. Journal of Energy Storage 54 (July):105210. doi:10.1016/j.est.2022.105210.
  • Jin, L., K. Wei, Y. Xia, B. Liu, K. Zhang, H. Gao, X. Chu, M. Ye, L. He, and P. Lin. 2019. Tree leaves-derived three-dimensional porous networks as separators for graphene-based supercapacitors. Materials Today Energy 14:100348. doi:10.1016/j.mtener.2019.100348.
  • Kanjana, K., P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul. 2021. Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application. Biomass and Bioenergy 153 (August):106206. doi:10.1016/j.biombioe.2021.106206.
  • Karakehya, N. 2023. Effects of one-step and two-step KOH activation method on the properties and supercapacitor performance of highly porous activated carbons prepared from lycopodium clavatum spores. Diamond and Related Materials 135 (January):109873. doi:10.1016/j.diamond.2023.109873.
  • Khan, A., R. A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu. 2020. A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochimica Acta 335:135588. doi:10.1016/j.electacta.2019.135588.
  • Kim, S., X. Yang, K. Yang, H. Guo, M. Cho, Y. J. Kim, and Y. Lee. 2022. Recycling respirator masks to a high-value product: From COVID-19 prevention to highly efficient battery separator. Chemical Engineering Journal 430 (P1):132723. doi:10.1016/j.cej.2021.132723.
  • Kumari, R., V. Singh, and C. Ravi Kant. 2023. Enhanced performance of activated carbon-based supercapacitor derived from waste soybean oil with coffee ground additives. Materials Chemistry and Physics 305 (May):127882. doi:10.1016/j.matchemphys.2023.127882.
  • Li, L., X. Hu, N. Guo, S. Chen, Y. Yu, and C. Yang. 2021. Synthesis O/S/N doped hierarchical porous carbons from kelp via two-step carbonization for high rate performance supercapacitor. Journal of Materials Research and Technology 15:6918–28. doi:10.1016/j.jmrt.2021.11.076.
  • Lim, T. G., B. H. Seo, S. J. Kim, S. Han, W. Lee, and J. W. Suk. 2023. Nitrogen-doped activated hollow carbon nanofibers with controlled hierarchical pore structures for high-performance, binder-free, flexible supercapacitor electrodes. American Chemical Society Omega. doi:10.1021/acsomega.3c08952.
  • Lin, Y., Z. Chen, C. Yu, and W. Zhong. 2019. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high- performance supercapacitors. ACS Sustainable Chemistry and Engineering 7 (3):3389–403. doi:10.1021/acssuschemeng.8b05593.
  • Liu, C., F. Li, M. Lai-Peng, and H. M. Cheng. 2010. Advanced materials for energy storage. Advanced Materials 22 (8):28–62. doi:10.1002/adma.200903328.
  • Liu, C., Z. Shao, J. Wang, C. Lu, and Z. Wang. 2016. Eco-friendly polyvinyl alcohol/cellulose nanofiber-Li+ composite separator for high-performance lithium-ion batteries. RSC Advances 6 (100):97912–20. doi:10.1039/c6ra18471e.
  • Liu, M. X., L. Y. Chen, D. Z. Zhu, H. Duan, W. Xiong, Z. J. Xu, L. H. Gan, and L. W. Chen. 2016. Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes. Chinese Chemical Letters 27 (3):399–404. doi:10.1016/j.cclet.2015.12.026.
  • Lobato-Peralta, D. R., E. Duque-Brito, H. O. Orugba, D. M. Arias, A. K. Cuentas-Gallegos, J. A. Okolie, and P. U. Okoye. 2023. Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage. Diamond and Related Materials 138 (July):110176. doi:10.1016/j.diamond.2023.110176.
  • Luo, X., S. Li, H. Xu, X. Zou, Y. Wang, J. Cheng, X. Li, Z. Shen, Y. Wang, and L. Cui. 2021. Hierarchically porous carbon derived from potassium-citrate-loaded poplar catkin for high performance supercapacitors. Journal of Colloid and Interface Science 582:940–49. doi:10.1016/j.jcis.2020.08.088.
  • Manasa, P., Z. J. Lei, and F. Ran. 2020. Biomass waste derived low cost activated carbon from Carchorus Olitorius (jute fiber) as sustainable and novel electrode material. Journal of Energy Storage 30 (March):101494. doi:10.1016/j.est.2020.101494.
  • Olabi, A. G. 2017. Renewable energy and energy storage systems. Energy 136:1–6. doi:10.1016/j.energy.2017.07.054.
  • Qian, W., F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, and F. Yan. 2014. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy and Environmental Science 7 (1):379–86. doi:10.1039/c3ee43111h.
  • Reguera, J., F. Zheng, A. E. Shalan, and E. Lizundia. 2022. Upcycling discarded cellulosic surgical masks into catalytically active freestanding materials. Cellulose 29 (4):2223–40. doi:10.1007/s10570-022-04441-9.
  • Schopf, D., and M. Es-Souni. 2017. Thin film nanocarbon composites for supercapacitor applications. Carbon 115:449–59. doi:10.1016/j.carbon.2017.01.027.
  • Selvaraj, A. R., A. Muthusamy, H. J. Kim, K. Prabakar, K. Senthil, and K. Prabakar. 2021. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 174:463–74. doi:10.1016/j.carbon.2020.12.052.
  • Sheng, J., R. Wang, and R. Yang. 2018. Physicochemical properties of cellulose separators for lithium ion battery: Comparison with Celgard2325. Materials 12 (1):2. doi:10.3390/ma12010002.
  • Usha Rani, M., K. Nanaji, T. N. Rao, and A. S. Deshpande. 2020. Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. Journal of Power Sources 471 (May):228387. doi:10.1016/j.jpowsour.2020.228387.
  • Wang, H., H. Niu, H. Wang, W. Wang, X. Jin, H. Wang, H. Zhou, and T. Lin. 2021. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. Journal of Power Sources 482 (August 2020):228986. doi:10.1016/j.jpowsour.2020.228986.
  • Wang, Q., S. Chen, and D. Zhang. 2020. CNT yarn-based supercapacitors. In Carbon nanotube fibers and yarns, Elsevier Ltd. 10.1016/b978-0-08-102722-6.00010-9.
  • Wang, S., Y. Liu, Q. Wang, P. Liu, L. Li, and T. Wang. 2022. Fabrication of self-doped aramid-based porous carbon fibers for the high-performance supercapacitors. Journal of Electroanalytical Chemistry 923 (2):116829. doi:10.1016/j.jelechem.2022.116829.
  • Wu, L., Y. Cai, S. Wang, and Z. Li. 2021. Doping of nitrogen into biomass-derived porous carbon with large surface area using N2 non-thermal plasma technique for high-performance supercapacitor. International Journal of Hydrogen Energy 46 (2):2432–44. doi:10.1016/j.ijhydene.2020.10.037.
  • Xiu, S., D. K. Kim, Y. Kang, S. Duan, Q. Wang, T. Chen, Y. Piao, J. Suk, X. Jin, and B. Quan. 2023. One-step synthesis of nitrogen and sulfur co-doped hierarchical porous carbon derived from acesulfame potassium as a dual-function agent for supercapacitors and lithium‑sulfur batteries. Journal of Energy Storage 66 (January):107214. doi:10.1016/j.est.2023.107214.
  • Xu, D., G. Teng, Y. Heng, Z. Chen, and D. Hu. 2020. Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Materials Chemistry and Physics 249 (December 2019):122979. doi:10.1016/j.matchemphys.2020.122979.
  • Xu, H., Y. Zhang, L. Wang, Y. Chen, and S. Gao. 2021. Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renewable Energy 179:1826–35. doi:10.1016/j.renene.2021.08.008.
  • Yadav, N., P. Ritu, S. A. Hashmi, and S. A. Hashmi. 2020. Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors. Sustainable Energy and Fuels 4 (4):1730–46. doi:10.1039/c9se00812h.
  • Yang, H., J. Zhou, M. Wang, S. Wu, W. Yang, and H. Wang. 2020. From basil seed to flexible supercapacitors: Green synthesis of heteroatom-enriched porous carbon by self-gelation strategy. International Journal of Energy Research 44 (6):4449–63. doi:10.1002/er.5222.
  • Yoo, J. E., and J. Bae. 2014. Novel flexible supercapacitors fabricated by simple integration of electrodes, binders, and electrolytes into glass fibre separators. Journal of the Korean Electrochemical Society 17 (4):237–44. doi:10.5229/jkes.2014.17.4.237.
  • Yu, H., Q. Tang, J. Wu, Y. Lin, L. Fan, M. Huang, J. Lin, Y. Li, and F. Yu. 2012. Using eggshell membrane as a separator in supercapacitor. Journal of Power Sources 206:463–68. doi:10.1016/j.jpowsour.2012.01.116.
  • Zeng, R., Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan, and Y. Chen. 2019. Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustainable Chemistry and Engineering 7 (13):11540–49. doi:10.1021/acssuschemeng.9b01442.
  • Zhou, C., Y. Zhang, Y. Li, and J. Liu. 2013. Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Letters 13 (5):2078–85. doi:10.1021/nl400378j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.