34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy and parametric analysis of solar absorption cooling systems for an office building: a case study

, , ORCID Icon &
Pages 6794-6815 | Received 11 Sep 2023, Accepted 12 May 2024, Published online: 22 May 2024

References

  • https://www.weather-atlas.com/en/algeria/souk-ahras
  • Abed, A. M., H. S. Majdi, K. Sopian, F. H. Ali, M. Al-Bahrani, Q. R. Al-Amir, and A. K. Yakoob. 2022. Techno-economic analysis of dual ejectors solar assisted combined absorption cooling cycle. Case Studies in Thermal Engineering 39:102423. doi:10.1016/j.csite.2022.102423
  • Agrouaz, Y., T. Bouhal, A. Allouhi, T. Kousksou, A. Jamil, and Y. Zeraouli. 2017. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates. Case Studies in Thermal Engineering 9:28–39. doi:10.1016/j.csite.2016.11.002
  • Alam Md, A., R. Kumar, A. S. Yadav, R. K. Arya, and V. P. Singh. 2023. Recent developments trends in HVAC (heating, ventilation, and air-conditioning) systems: A comprehensive review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.01.357
  • ASHRAE Handbook—Fundamentals. 2017. Atlanta: ASHRAE.
  • Assilzadeh, F., S. A. Kalogirou, Y. Ali, and K. Sopian. 2005. Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors. Renew Energy 30 (8):1143–59. doi:10.1016/j.renene.2004.09.017
  • Balghouthi, M., M. H. Chahbani, and A. Guizani. 2008. Feasibility of solar absorption air conditioning in Tunisia. Building & Environment 43 (9):1459–70. doi:10.1016/j.buildenv.2007.08.003
  • Bellos, E., C. Tzivanidis, and K. A. Antonopoulos. 2016. Exergetic and energetic comparison of LiCl-H 2 O and LiBr-H 2 O working pairs in a solar absorption cooling system. Energy Conversion and Management 123:453–61. doi:10.1016/j.enconman.2016.06.068
  • Bellos, E., C. Tzivanidis, N. Zervas, G. Mitsopoulos, and K. A. Antonopoulos. 2016. Energetic and financial comparison between a 1-stage absorption chiller driven by FPC and a 2-stage absorption chiller driven by PTC. doi:10.11159/ichtd16.102
  • Bilgili, M. 2011. Hourly simulation and performance of solar electric-vapor compression refrigeration system. Solar Energy 85 (11):2720–31. doi:10.1016/j.solener.2011.08.013
  • Brahim, B., R. Nor, H. S. Eddine Modeling of an efficient solar absorption cooling system for a building in Souk Ahras City, Algeria. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE; 2022, p. 1582–85. 10.1109/SSD54932.2022.9955838
  • Camara, S., and A. B. Sulin. 2022. Study of a double-acting solar collector for use in the absorption cooling system in hot regions. Thermal Science and Engineering Progress 31:101286. doi:10.1016/j.tsep.2022.101286
  • Christopher, S. S., A. K. Thakur, S. K. Hazra, S. W. Sharshir, A. K. Pandey, S. Rahman, P. Singh, L. S. Sunder, A. K. Raj, R. Dhivagar, et al. 2023. Performance evaluation of external compound parabolic concentrator integrated with thermal storage tank for domestic solar refrigeration system. Environmental Science and Pollution Research 30(22):62137–50. doi:10.1007/s11356-023-26399-2
  • Dahl, R. 2013. Cooling concepts: Alternatives to air conditioning for a warm world. Environmental Health Perspectives 121 (1):121. doi:10.1289/ehp.121-a18
  • de Bortoli, A., and M. Agez. 2023. Environmentally-extended input-output analyses efficiently sketch large-scale environmental transition plans: Illustration by Canada’s road industry. Journal of Cleaner Production 388:136039. doi:10.1016/j.jclepro.2023.136039
  • Duffie, J. A., and W. A. Beckman. 2013. Solar engineering of thermal processes. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9781118671603
  • ETC-30 Solar Collector. https://www.apricus.com/ETC-30-Solar-Collector-pd43215927.html n.d.
  • Florides, G. A., S. A. Kalogirou, S. A. Tassou, and L. C. Wrobel. 2002. Modelling and simulation of an absorption solar cooling system for Cyprus. Solar Energy 72 (1):43–51. doi:10.1016/S0038-092X(01)00081-0
  • González-Torres, M., L. Pérez-Lombard, J. F. Coronel, I. R. Maestre, and D. Yan. 2022. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports 8:626–37. doi:10.1016/j.egyr.2021.11.280
  • Hang, Y., and M. Qu. The impact of hot and cold storages on a solar absorption cooling system for an office building. International High Performance Buildings Conference, Purdue, Purdue University, West Lafayette, Indiana, USA; 2010, p. 3472–80.
  • He, T., X. Zhang, C. Wang, M. Wang, B. Li, N. Xue, K. Shimizu, K. Takahashi, and Y. Wu. 2015. Application of solar thermal cooling system driven by low temperature heat source in China. Energy Procedia 70:454–61. doi:10.1016/j.egypro.2015.02.147
  • Jalalizadeh, M., R. Fayaz, S. Delfani, H. J. Mosleh, and M. Karami. 2021. Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors. Journal of Building Engineering 43:102482. doi:10.1016/j.jobe.2021.102482
  • Kanan, S., J. Dewsbury, and G. F. Lane-Serff. 2015. Simulation of solar air-conditioning system with salinity gradient solar pond. Energy Procedia 79:746–51. doi:10.1016/j.egypro.2015.11.561
  • Khan, M. S. A., A. W. Badar, T. Talha, M. W. Khan, and F. S. Butt. 2018. Configuration based modeling and performance analysis of single effect solar absorption cooling system in TRNSYS. Energy Conversion and Management 157:351–63. doi:10.1016/j.enconman.2017.12.024
  • Lin, Y., M. K. Anser, M.-P. Peng, and M. Irfan. 2023. Assessment of renewable energy, financial growth and in accomplishing targets of China’s cities carbon neutrality. Renew Energy 205:1082–91. doi:10.1016/j.renene.2022.11.026
  • Liu, J., H. Tang, C. Jiang, S. Wu, L. Ye, D. Zhao, and Z. Zhou. 2022. Micro‐nano porous structure for efficient daytime radiative sky cooling. Advanced Functional Materials 32 (44):2206962. doi:10.1002/adfm.202206962
  • Lubis, A., N. Giannetti, M. I. Alhamid, K. Saito, and H. Yabase. 2023. Dynamic analysis of single–double-effect absorption chiller with variable thermal conductance during partial-load operation. Applied Thermal Engineering 218:119424. doi:10.1016/j.applthermaleng.2022.119424
  • Mateus, T., and A. C. Oliveira. 2009. Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates. Applied Energy 86 (6):949–57. doi:10.1016/j.apenergy.2008.09.005
  • Min, J., G. Yan, A. M. Abed, S. Elattar, M. Amine Khadimallah, A. Jan, and H. Elhosiny Ali. 2022. The effect of carbon dioxide emissions on the building energy efficiency. Fuel 326:124842. doi:10.1016/j.fuel.2022.124842
  • Molero-Villar, N., J. M. Cejudo-López, F. Domínguez-Muñoz, and A. Carrillo-Andrés. 2012. A comparison of solar absorption system configurations. Solar Energy 86 (1):242–52. doi:10.1016/j.solener.2011.09.027
  • Monné, C., S. Alonso, F. Palacín, and L. Serra. 2011. Monitoring and simulation of an existing solar powered absorption cooling system in Zaragoza (Spain). Applied Thermal Engineering 31 (1):28–35. doi:10.1016/j.applthermaleng.2010.08.002
  • Noferesti, S., M. Ahmadzadehtalatapeh, and V. G. Motlagh. 2022. The application of solar integrated absorption cooling system to improve the air quality and reduce the energy consumption of the air conditioning systems in buildings – a full year model simulation. Energy & Buildings 274:112420. doi:10.1016/j.enbuild.2022.112420
  • Peuser, D. F. A., K.-H. Remmers, and M. Schnauss. 2013. Solar Thermal Systems. Routledge. doi:10.4324/9781315067247
  • Raihan, A. 2023. The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus 9:100180. doi:10.1016/j.nexus.2023.100180
  • Rao, S., P. Samant, and A. Kadampatta. 2013. Reshma Shenoy. An overview of Taguchi method: evolution, concept and interdisciplinary applications. International Journal of Scientific and Engineering Research 4:621–26.
  • Rehman, A., M. M. Alam, I. Ozturk, R. Alvarado, M. Murshed, C. Işık, and H. Ma. 2022. Globalization and renewable energy use: How are they contributing to upsurge the CO2 emissions? A global perspective. Environmental Science and Pollution Research 30 (4):9699–712. doi:10.1007/s11356-022-22775-6
  • Shen, R., S. Huang, and S. Yang. 2023. Regional industrial redistribution and carbon emissions: A dynamic analysis for China. Climate Policy 23 (3):300–13. doi:10.1080/14693062.2022.2161980
  • Siddique, M. Z., A. W. Badar, M. S. Siddiqui, F. S. Butt, M. Saleem, K. Mahmood, and I. Fazal. 2022. Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field. Energy 245:123299. doi:10.1016/j.energy.2022.123299
  • Sokhansefat, T., D. Mohammadi, A. Kasaeian, and A. R. Mahmoudi. 2017. Simulation and parametric study of a 5-ton solar absorption cooling system in Tehran. Energy Conversion and Management 148:339–51. doi:10.1016/j.enconman.2017.05.070
  • Solar resource maps of Algeria. https://solargis.com/maps-and-gis-data/download/algeria n.d.
  • Tariq, R., A. Bassam, O. D. C. Mg, L. J. Ricalde, and O. Carvente. 2023. Sustainability framework of intelligent social houses with a synergy of double-façade architecture and active air conditioning systems. Energy Conversion and Management 288:117120. doi:10.1016/j.enconman.2023.117120
  • Tashtoush, B., A. Alshare, and S. Al-Rifai. 2015. Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Conversion and Management 100:288–99. doi:10.1016/j.enconman.2015.05.010
  • Terrab, H., and A. Kara. 2018. Parameters design optimization of 230 kV corona ring based on electric field analysis and response surface methodology. Electric Power Systems Research 163:782–88. doi:10.1016/j.epsr.2017.06.002
  • Terrab, I., N. Rebah, S. Abdelouahed, M. Aillerie, and J.-P. Charles. 2022. Numerical investigation and modelling of controllable parameters on the photovoltaic thermal collector efficiency in semi-humid climatic conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (4):8760–76. doi:10.1080/15567036.2022.2125124
  • TRNSYS. n.d. A transient system simulation program. Madison: University of Wisconsin.
  • Uçkan, I., and A. A. Yousif. 2020. Simulation of a solar absorption cooling system in Dohuk city of the Northern Iraq. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (14):1716–32. doi:10.1080/15567036.2019.1604881
  • Uçkan, İ., and A. A. Yousif. 2021. Investigation of the effect of various solar collector types on a solar absorption cooling system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (7):875–92. doi:10.1080/15567036.2020.1766599
  • Wang, R. Z., Z. Y. Xu, Q. W. Pan, S. Du, and Z. Z. Xia. 2016. Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures. Applied Energy 169:846–56. doi:10.1016/j.apenergy.2016.02.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.