46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental studies, characterization, and optimization of organic nonconsumable biomass wastes for utilization in energy storage applications

&
Pages 7710-7719 | Received 27 Dec 2023, Accepted 07 Jun 2024, Published online: 26 Jun 2024

References

  • Atinafu, D. G., B. Y. Yun, Y. U. Kim, S. Wi, and S. Kim. 2021. Introduction of eicosane into biochar derived from softwood and wheat straw: Influence of porous structure and surface chemistry. Chemical Engineering Journal 415 (January):128887. doi: 10.1016/j.cej.2021.128887.
  • Azargohar, R., and A. K. Dalai. 2006. Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology 131 (1–3):762–73. doi: 10.1385/ABAB:131:1:762.
  • Biesuz, M., F. Valentini, M. Bortolotti, A. Zambotti, F. Cestari, A. Bruni, V. M. Sglavo, G. D. Sorarù, A. Dorigato, and A. Pegoretti. 2021. Biogenic architectures for green, cheap, and efficient thermal energy storage and management. Renewable Energy 178:96–107. doi: 10.1016/j.renene.2021.06.068.
  • Chandrasekaran, A., S. Ramachandran, and S. Subbiah. 2017. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresource Technology 233:413–22. doi: 10.1016/j.biortech.2017.02.119.
  • Chen, Y., Z. Cui, H. Ding, Y. Wan, Z. Tang, and J. Gao. 2018. Cost-effective biochar produced from agricultural residues and its application for preparation of high performance form-stable phase change material via simple method. International Journal of Molecular Sciences 19 (10):3055. doi: 10.3390/ijms19103055.
  • Das, D., U. Bordoloi, H. H. Muigai, and P. Kalita. 2020. A novel form stable PCM based bio composite material for solar thermal energy storage applications. Journal of Energy Storage 30 (March):101403. doi: 10.1016/j.est.2020.101403.
  • Elkhalifa, S., P. Parthasarathy, H. R. Mackey, T. Al-Ansari, O. Elhassan, S. Mansour, and G. McKay. 2022. Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Conversion and Biorefinery 0123456789. doi: 10.1007/s13399-022-02441-0.
  • Fodil Cherif, M., D. Trache, N. Brosse, F. Benaliouche, and A. F. Tarchoun. 2020. Comparison of the physicochemical properties and thermal stability of Organosolv and kraft lignins from hardwood and softwood biomass for their potential valorization. Waste and Biomass Valorization 11 (12):6541–53. doi: 10.1007/s12649-020-00955-0.
  • Fu, Y., Y. Shen, Z. Zhang, X. Ge, and M. Chen. 2019. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Science of the Total Environment 646:1567–77. doi: 10.1016/j.scitotenv.2018.07.423.
  • InstaNANO. n.d. FTIR DATABASE BY instaNANO. https://instanano.com/all/characterization/ftir/ftir-functional-group-search/.
  • Isahak, W. N. R. W., M. W. M. Hisham, and M. A. Yarmo. 2013. Highly porous carbon materials from biomass by chemical and carbonization method: A comparison study. Journal of Chemistry 2013 (1):1–6. doi: 10.1155/2013/620346.
  • Leng, L., Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li, and H. Huang. 2021. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment 763:144204. doi: 10.1016/j.scitotenv.2020.144204.
  • Mistar, E. M., T. Alfatah, and M. D. Supardan. 2020. Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology 9 (3):6278–86. doi: 10.1016/j.jmrt.2020.03.041.
  • Nandiyanto, A. B. D., R. Oktiani, and R. Ragadhita. 2019. How to read and interpret ftir spectroscope of organic material. Indonesian Journal of Science & Technology 4 (1):97–118. doi: 10.17509/ijost.v4i1.15806.
  • Qiao, Y., C. Zhang, F. Kong, Q. Zhao, A. Kong, and Y. Shan. 2021. Activated biochar derived from peanut shells as the electrode materials with excellent performance in zinc-air battery and supercapacitance. Waste Management 125:257–67. doi: 10.1016/j.wasman.2021.02.057.
  • Subran, N., K. Ajit, H. Krishnan, S. Pachiyappan, and P. Ramaswamy. 2023. Synthesis and performance of a cathode catalyst derived from areca nut husk in microbial fuel cell. Chemosphere 312 (2):137303. doi: 10.1016/j.chemosphere.2022.137303.
  • Thomas, P., C. W. Lai, M. Rafie, and B. Johan. 2019. Acceptet. Journal of Analytical and Applied Pyrolysis. doi: 10.1016/j.jaap.2019.03.021.
  • Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87 (9–10):1051–69. doi: 10.1515/pac-2014-1117.
  • Vardhan, H., R. B. Mahato, S. Sasmal, and K. Mohanty. 2022. Production of xylose from pre-treated husk of areca nut. Journal of Natural Fibers 19 (1):131–44. doi: 10.1080/15440478.2020.1731905.
  • Wang, F., D. Ouyang, Z. Zhou, S. J. Page, D. Liu, and X. Zhao. 2021. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry 57:247–80. doi: 10.1016/j.jechem.2020.08.060.
  • Xiao, J., J. Han, C. Zhang, G. Ling, F. Kang, and Q. H. Yang. 2022. Dimensionality, function and performance of carbon materials in energy storage devices. Advanced Energy Materials 12 (4):1–17. doi: 10.1002/aenm.202100775.
  • Yang, B., Y. Liu, Q. Liang, M. Chen, L. Ma, L. Li, Q. Liu, W. Tu, D. Lan, and Y. Chen. 2019. Evaluation of activated carbon synthesized by one-stage and two-stage co-pyrolysis from sludge and coconut shell. Ecotoxicology and Environmental Safety 170 (August 2018):722–31. doi: 10.1016/j.ecoenv.2018.11.130.
  • Yedla, R., and D. Wardle. 2015. Thermal characteristics of various biomass fuels in a small-scale biomass combustor. Applied Thermal Engineering 85:243–51. doi: 10.1016/j.applthermaleng.2015.03.055.
  • Zheng, B., X. Lin, X. Zhang, D. Wu, and K. Matyjaszewski. 2020. Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Advanced Functional Materials 30 (41):1–48. doi: 10.1002/adfm.201907006.
  • Zubrik, A., M. Matik, S. Hredzák, M. Lovás, Z. Danková, M. Kováčová, and J. Briančin 2017. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. Journal of Cleaner Production 143:643–53. doi:10.1016/j.jclepro.2016.12.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.