0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation effects of different calorific values and operating conditions on biogas flame: a CFD study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 8171-8189 | Received 10 May 2023, Accepted 21 May 2024, Published online: 26 Jun 2024

References

  • Alabaş, B., G. Tunç, M. Taştan, and İ. Yılmaz. 2021. Examination of combustion characteristics of oxygen enriched synthetic gases mixtures at various acoustic frequencies. International Journal of Hydrogen Energy 47 (24):12365–76. doi:10.1016/j.ijhydene.2021.07.035.
  • Alrbai, M., S. Al-Dahidi, and M. Abusorra. 2021. Investigation of the main exhaust emissions of HCCI engine using a newly proposed chemical reaction mechanism for biogas fuel. Case Studies in Thermal Engineering 26:100994. doi:10.1016/J.CSITE.2021.100994.
  • Alrbai, M., A. Darwish Ahmad, S. Al-Dahidi, A. M. Abubaker, L. Al-Ghussain, H. S. Hayajneh, and N. K. Akafuah. 2022. Effect of hydrogen sulfide content on the combustion characteristics of biogas fuel in homogenous charge compression ignition engines. Case Studies in Thermal Engineering 40:102509. doi:10.1016/j.csite.2022.102509.
  • Amar, H., M. Abdelbaki, T. Fouzi, and A. Zeroual. 2018. Effect of the addition of H2 and H2O on the polluting species in a counter-flow diffusion flame of biogas in flameless regime. International Journal of Hydrogen Energy 43 (6):3475–81. doi:10.1016/J.IJHYDENE.2017.11.159.
  • ANSYS FLUENT. 2018. V. 18.1. Canonsburg, PA: ANSYS Inc.
  • Bohlooli Arkhazloo, N., Y. Bouissa, F. Bazdidi-Tehrani, M. Jadidi, J. B. Morin, and M. Jahazi. 2019. Experimental and unsteady CFD analyses of the heating process of large size forgings in a gas-fired furnace. Case Studies in Thermal Engineering 14:14. doi:10.1016/J.CSITE.2019.100428.
  • Brookes, S. J., and J. B. Moss. 1999. Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane. Combustion & Flame 116 (1–2):49–61. doi:10.1016/S0010-2180(98)00027-3.
  • Cellek, M. S. 2020a. Turbulent flames investigation of methane and syngas fuels with the perspective of near-wall treatment models. International Journal of Hydrogen Energy 45 (60):35223–34. doi:10.1016/j.ijhydene.2020.05.039.
  • Cellek, M. S. 2020b. Flameless combustion modeling of CH4/H2 in the laboratory-scaled pilot furnace. International Journal of Hydrogen Energy 45 (60): 35208–35222.
  • Charest, M. R. J., Ö. L. Gülder, and C. P. T. Groth. 2014. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion & Flame 161 (10):2678–91. doi:10.1016/J.COMBUSTFLAME.2014.04.012.
  • Colorado, A., and V. McDonell. 2018. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment. Applied Thermal Engineering 130:1507–19. doi:10.1016/J.APPLTHERMALENG.2017.11.047.
  • Dai, W., C. Qin, Z. Chen, C. Tong, and P. Liu. 2012. Experimental studies of flame stability limits of biogas flame. Energy Conversion and Management 63:157–61. doi:10.1016/J.ENCONMAN.2012.03.021.
  • Deepanraj, B., N. Senthilkumar, and J. Ranjitha. 2019. Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (11):1329–36. doi:10.1080/15567036.2019.1636902.
  • Devi, S., N. Sahoo, and P. Muthukumar. 2023. Comparative performance evaluation of a porous radiant burner with a conventional burner: Biogas combustion. Applied Thermal Engineering 218:119338. doi:10.1016/J.APPLTHERMALENG.2022.119338.
  • Fischer, M., and X. Jiang. 2015. An investigation of the chemical kinetics of biogas combustion. Fuel 150:711–20. doi:10.1016/J.FUEL.2015.01.085.
  • Fuzesi, D., and V. Jozsa. 2019. Numerical analysis of biogas combustion in a lean premixed swirl burner. 7th International Youth Conference on Energy, IYCE 2019. doi:10.1109/IYCE45807.2019.8991563.
  • Habib, R., B. Yadollahi, A. Saeed, M. H. Doranehgard, L. Lkb, and N. Karimi. 2021. Unsteady ultra-lean combustion of methane and biogas in a porous burner – an experimental study. Applied Thermal Engineering 182:116099. doi:10.1016/J.APPLTHERMALENG.2020.116099.
  • Hoerlle, C. A., F. H. R. França, P. R. Pagot, and F. M. Pereira. 2020. Effects of radiation modeling on non-premixed sooting flames simulations under oxyfuel conditions. Combustion & Flame 217:294–305. doi:10.1016/J.COMBUSTFLAME.2020.04.012.
  • Hoerlle, C. A., and F. M. Pereira. 2019. Effects of CO2 addition on soot formation of ethylene non-premixed flames under oxygen enriched atmospheres. Combustion & Flame 203:407–23. doi:10.1016/J.COMBUSTFLAME.2019.02.016.
  • İlbaş, M., M. Şahin, and S. Karyeyen. 2018. 3D numerical modelling of turbulent biogas combustion in a newly generated 10 KW burner. Journal of the Energy Institute 91 (1):87–99. doi:10.1016/j.joei.2016.10.004.
  • Karataş, A. E., and Ö. L. Gülder. 2017. Effects of carbon dioxide and nitrogen addition on soot processes in laminar diffusion flames of ethylene-air at high pressures. Fuel 200:76–80. doi:10.1016/J.FUEL.2017.03.026.
  • Kekec, K. B., and S. Karyeyen. 2020. Combustion Characteristics on colorless distributed combustion (CDC) in a cyclonic burner. International Journal of ENERGY STUDIES 5:43–55.
  • Kekec, K. B., and S. Karyeyen. 2021. H2 – CH4 blending fuels combustion using a cyclonic burner on colorless distributed combustion. International Journal of Hydrogen Energy 47 (24):12393–409. doi:10.1016/j.ijhydene.2021.08.118.
  • Lehtomäki, A., S. Huttunen, and J. A. Rintala. 2007. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation & Recycling 51:591–609. doi:10.1016/J.RESCONREC.2006.11.004.
  • Leung, T., and I. Wierzba. 2008. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. International Journal of Hydrogen Energy 33 (14):3856–62. doi:10.1016/J.IJHYDENE.2008.04.030.
  • Liu, S., T. L. Chan, Z. He, Y. Lu, X. Jiang, and F. Wei. 2019. Soot formation and evolution characteristics in premixed methane/ethylene-oxygen-argon burner-stabilized stagnation flames. Fuel 242:871–82. doi:10.1016/J.FUEL.2018.12.051.
  • Liu, F., J. L. Consalvi, and F. Nmira. 2023. The importance of accurately modelling soot and radiation coupling in laminar and laboratory-scale turbulent diffusion flames. Combustion & Flame 258:112573. doi:10.1016/J.COMBUSTFLAME.2022.112573.
  • Liu, Z., and J. Lv. 2016. The effect of total solids concentration and temperature on biogas production by anaerobic digestion. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 38:3534–41. doi:10.1080/15567036.2016.1183064.
  • Mameri, A., S. Boussetla, R. Belalmi, and Z. Aouachria. 2019. Combustion characterization of the mixtures biogas-syngas, strain rate and ambient pressure effects. International Journal of Hydrogen Energy 44 (39):22478–91. doi:10.1016/j.ijhydene.2019.05.142.
  • Mameri, A., and F. Tabet. 2016. Numerical investigation of counter-flow diffusion flame of biogas–hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. International Journal of Hydrogen Energy 41 (3):2011–22. doi:10.1016/j.ijhydene.2015.11.035.
  • Mong, G. R., M. C. Chiong, C. T. Chong, J. H. Ng, S. Mashruk, M. V. Tran, K. M. Lee, N. A. Samiran, K. Y. Wong, A. Valera-Medina, et al. 2023. Fuel-lean ammonia/biogas combustion characteristics under the reacting swirl flow conditions. Fuel 331:125983. doi:10.1016/J.FUEL.2022.125983.
  • Moussa, O., and Z. Driss. 2017. Numerical investigation of the turbulence models effect on the combustion characteristics in a non-premixed turbulent flame methane-air. American Journal of Energy Research 5:85–93. doi:10.12691/AJER-5-3-3.
  • Nourbakhsh, H., J. Rahbar Shahrouzi, A. Zamaniyan, H. Ebrahimi, and M. R. Jafari Nasr. 2018. A thermodynamic analysis of biogas partial oxidation to synthesis gas with emphasis on soot formation. International Journal of Hydrogen Energy 43 (33):15703–19. doi:10.1016/J.IJHYDENE.2018.06.134.
  • Özdemir, M. R., M. U. Yangaz, and I. T. Yilmaz. 2021. Energy, exergy and exergo-economic characteristics of hydrogen enriched hydrocarbon-based fuels in a premixed burner. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (23):3119–36. doi:10.1080/15567036.2021.1895371.
  • Rocha, N., F. M. Quintino, and E. C. Fernandes. 2020. H2 enrichment impact on the chemiluminescence of biogas/air premixed flames. International Journal of Hydrogen Energy 45 (4):3233–50. doi:10.1016/J.IJHYDENE.2019.11.115.
  • Sabnis, P., and S. K. Aggarwal. 2018. A numerical study of NOx and soot emissions in methane/n-heptane triple flames. Renew Energy 126:844–54. doi:10.1016/J.RENENE.2018.04.007.
  • Şanlı, A., İ. T. Yılmaz, and M. Gümüş. 2021. Investigation of combustion and emission characteristics in a TBC diesel engine fuelled with CH4–CO2–H2 mixtures. International Journal of Hydrogen Energy 46 (47):24395–409. doi:10.1016/j.ijhydene.2021.05.014.
  • Sarvestani, N. S., M. H. Abbaspour-Fard, M. Tabasizadeh, H. Nayebzadeh, T. C. Van, M. Jafari, Z. Ristovski, and R.J. Brown. 2020. Synthesize of magnetite Mg-Fe mixed metal oxide nanocatalyst by urea-nitrate combustion method with optimal fuel ratio for reduction of emissions in diesel engines. Journal of Alloys and Compounds 838:155627. doi:10.1016/J.JALLCOM.2020.155627.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, et al. n.d. Gri-mech 3.0.
  • Tang, B., M. He, Y. Dong, J. Liu, X. Zhao, C. Wang, K. Wu, F. Yin, and W. Zhang. 2020. Effects of different forms of vegetable waste on biogas and methane production performances in a batch anaerobic digestion reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2020.1818003.
  • Unitrove. 2021. https://www.unitrove.com/engineering/tools/gas/natural-gas-calorific-value.
  • Wei, Z., H. Zhen, C. Leung, C. Cheung, and Z. Huang. 2020. Effects of H2 addition on the formation and emissions of CO/NO2/NOx in the laminar premixed biogas-hydrogen flame undergoing the flame-wall interaction. Fuel 259:116257. doi:10.1016/J.FUEL.2019.116257.
  • Yang, X., Z. He, S. Dong, and H. Tan. 2018. Prediction of turbulence radiation interactions of CH4–H2/air turbulent flames at atmospheric and elevated pressures. International Journal of Hydrogen Energy 43 (32):15537–50. doi:10.1016/j.ijhydene.2018.06.060.
  • Yilmaz, İ., B. Alabaş, M. Taştan, and G. Tunç. 2020. Effect of oxygen enrichment on the flame stability and emissions during biogas combustion: An experimental study. Fuel 280:280. doi:10.1016/j.fuel.2020.118703.
  • Yilmaz, H., O. Cam, S. Tangoz, and I. Yilmaz. 2017. Effect of different turbulence models on combustion and emission characteristics of hydrogen/air flames. International Journal of Hydrogen Energy 42 (40):25744–55. doi:10.1016/j.ijhydene.2017.04.080.
  • Yilmaz, I., and M. Ilbas. 2008. An experimental study on hydrogen–methane mixtured fuels. International Communications in Heat and Mass Transfer 35 (2):178–87. doi:10.1016/j.icheatmasstransfer.2007.06.004.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2013. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. International Journal of Hydrogen Energy 38 (16):6874–81. doi:10.1016/J.IJHYDENE.2013.02.046.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2016. Combustion characteristic and heating performance of stoichiometric biogas–hydrogen–air flame. International Journal of Heat and Mass Stansfer 92:807–14. doi:10.1016/J.IJHEATMASSTRANSFER.2015.09.040.
  • Zouagri, R., A. Mameri, F. Tabet, and A. Hadef. 2020. Characterization of the combustion of the mixtures biogas-syngas at high strain rates. Fuel 271:117580. doi:10.1016/j.fuel.2020.117580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.