20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy analysis, mass transfer, and rehydration kinetics of okra dried using evacuated tube solar dryer

ORCID Icon & ORCID Icon
Pages 8088-8107 | Received 31 Jan 2024, Accepted 17 May 2024, Published online: 26 Jun 2024

References

  • Abi Mathew, A., and V. Thangavel. 2021. A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renewable Energy 179:1674–93. doi:10.1016/j.renene.2021.07.029.
  • Akpinar, E. K. 2010. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Conversion and Management 51 (12):2407–18. doi:10.1016/j.enconman.2010.05.005.
  • Alhanif, M., A. C. Kumoro, and D. H. Wardhani. 2022. Thin-layer drying of papaya (Carica papaya) seeds: Drying kinetics, mathematical modeling and effective moisture diffusivity. 2ND Energy Security and Chemical Engineering Congress (ESChE 2021), Gambang, Malaysia, November 3–5, 2021, 2610. AIP Publishing.
  • A. O. A. C. 1925. Official Methods of Analysis of the Association of Official Analytical Chemists (Vol. 2).
  • Aviara, N. A., L. N. Onuoha, O. E. Falola, and J. C. Igbeka. 2014. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy 73:809–17. doi:10.1016/j.energy.2014.06.087.
  • Bhat, S., C. S. Saini, and H. K. Sharma. 2017. Changes in total phenolic content and color of bottle gourd (Lagenaria siceraria) juice upon conventional and ohmic blanching. Food Science and Biotechnology 26 (1):29–36. doi:10.1007/s10068-017-0004-7.
  • Daghigh, R., and A. Shafieian. 2016. Energy-exergy analysis of a multipurpose evacuated tube heat pipe solar water heating-drying system. Experimental Thermal and Fluid Science 78:266–77. doi:10.1016/j.expthermflusci.2016.06.010.
  • Darvishi, H., M. Azadbakht, and B. Noralahi. 2018. Experimental performance of mushroom fluidized-bed drying: Effect of osmotic pretreatment and air recirculation. Renewable Energy 120:201–08. doi:10.1016/j.renene.2017.12.068.
  • Das, M., and E. K. Akpinar. 2020. Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering 21:100731. doi:10.1016/j.csite.2020.100731.
  • Deng, L. Z., Z. Pan, A. S. Mujumdar, J. H. Zhao, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2019. High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 96:104–11, 1. doi:10.1016/j.foodcont.2018.09.008.
  • Doymaz, İ. 2005. Drying characteristics and kinetics of okra. Journal of Food Engineering 69 (3):275–79. doi:10.1016/j.jfoodeng.2004.08.019.
  • Dutta, C., D. K. Yadav, V. K. Arora, and S. Malakar. February 1, 2023. Drying characteristics and quality analysis of pre-treated turmeric (Curcuma longa) using evacuated tube solar dryer with and without thermal energy storage. Solar Energy 251:392–403. doi:10.1016/j.solener.2023.01.032.
  • El-Mesery, H. S., M. Qenawy, Z. Hu, and W. G. Alshaer. October 1, 2023. Evaluation of infrared drying for okra: Mathematical modelling, moisture diffusivity, energy activity and quality attributes. Case Studies in Thermal Engineering 50:103451. doi:10.1016/j.csite.2023.103451.
  • Famurewa, J., and K. Olumofin. 2015. Drying kinetics and influence on the chemical characteristics of dehydrated okra (Abelmoschus esculentus) using cabinet dryer. European Journal of Pure and Applied Chemistry 2 (1):7–19.
  • Fang, X. M., Z. L. Liu, H. M. Xiao, M. Torki, V. Orsat, G. S. V. Raghavan, H. Xiao, and H. Wang. 2023. Performance assessment of an evacuated tube solar-electric hybrid dryer for lotus seeds drying: Moisture removal behavior, GHG emission and thermodynamic analysis. Journal of Cleaner Production 406:136972. doi:10.1016/j.jclepro.2023.136972.
  • FAO. 2023. World food and agriculture – statistical yearbook 2023. Rome. doi:10.4060/cc8166en.
  • Guo, Y., B. Wu, X. Guo, F. Ding, Z. Pan, and H. Ma. 2020. Effects of power ultrasound enhancement on infrared drying of carrot slices: Moisture migration and quality characterizations. LWT 126:109312. doi:10.1016/j.lwt.2020.109312.
  • Karthikeyan, A. K., and S. Murugavelh. 2018. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy 128:305–12. doi:10.1016/j.renene.2018.05.061.
  • Koua, B. K., P. M. E. Koffi, and P. Gbaha. 2019. Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences 18 (1):72–82. doi:10.1016/j.jssas.2017.01.002.
  • Kumar, A., P. Kandasamy, I. Chakraborty, and L. Hangshing. 2022. Analysis of energy consumption, heat and mass transfer, drying kinetics and effective moisture diffusivity during foam-mat drying of mango in a convective hot-air dryer. Biosystems Engineering 219:85–102. doi:10.1016/j.biosystemseng.2022.04.026.
  • Lamnatou, C., E. Papanicolaou, V. Belessiotis, and N. Kyriakis. 2012. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. Applied Energy 94:232–43. doi:10.1016/j.apenergy.2012.01.025.
  • Lopez‐Quiroga, E., V. Prosapio, P. J. Fryer, I. T. Norton, and S. Bakalis. 2020. Model discrimination for drying and rehydration kinetics of freeze‐dried tomatoes. Journal of Food Process Engineering 43 (5):e13192. doi:10.1111/jfpe.13192.
  • Malakar, S., V. K. Arora, P. K. Nema, and D. K. Yadav. 2023. Development of infrared-assisted hybrid solar dryer for drying pineapple slices: Investigation of drying characteristics, mass transfer parameters, and quality attributes. Innovative Food Science & Emerging Technologies 88:103437. doi:10.1016/j.ifset.2023.103437.
  • Mohamed, M., G. Gamea, and M. Keshek. 2010. Drying characteristics of okra by different solar dryers. Misr Journal of Agricultural Engineering 27 (1):294–312. doi:10.21608/mjae.2010.107169.
  • Mugi, V. R., and V. P. Chandramohan. 2021. Energy and exergy analysis of forced and natural convection indirect solar dryers: Estimation of exergy inflow, outflow, losses, exergy efficiencies and sustainability indicators from drying experiments. Journal of Cleaner Production 282:124421. doi:10.1016/j.jclepro.2020.124421.
  • Nabnean, S., S. Janjai, S. Thepa, K. Sudaprasert, R. Songprakorp, and B. K. Bala. 2016. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renewable Energy 94:147–56. doi:10.1016/j.renene.2016.03.013.
  • Ndukwu, M. C., C. Dirioha, F. I. Abam, and V. E. Ihediwa. 2017. Heat and mass transfer parameters in the drying of cocoyam slice. Case Studies in Thermal Engineering 9:62–71. doi:10.1016/J.CSITE.2016.12.003.
  • Noshad, M., M. Mohebbi, F. Shahidi, and S. A. Mortazavi. 2012. Kinetic modeling of rehydration in air‐dried quinces pretreated with osmotic dehydration and ultrasonic. Journal of Food Processing and Preservation 36 (5):383–92. doi:10.1111/j.1745-4549.2011.00593.x.
  • Olajire, A., T. Tunde-Akintunde, and G. Ogunlakin. 2018. Drying kinetics and moisture diffusivity study of okro slice. Journal of Food Processing & Technology 9 (9):1–12.
  • Ouedraogo, G. W. P., B. Kaboré, S. Kam, and D. J. Bathiébo. 2017. Determination of physical and chemical properties of okra during convective solar drying. International Journal of Engineering & Advanced Technology (IJEAT) 7 (1):76–80.
  • Owolarafe, O., O. Aregbesola, A. Odumosu, O. B. Falana, and T. M. Olagunju. 2020. Effects of processing condition on the drying and quality characteristics of Okra. Journal of Agricultural Engineering and Technology 25 (2):59–71.
  • Owusu-Kwarteng, J., F. K. Kori, and F. Akabanda. 2017. Effects of blanching and natural convection solar drying on quality characteristics of red pepper (Capsicum annuum L.). International Journal of Food Science 2017:1–6. doi:10.1155/2017/4656814.
  • Pendre, N., P. K. Nema, H. P. Sharma, S. Rathore, and S. Kushwah. 2012. Effect of drying temperature and slice size on quality of dried okra (Abelmoschus esculentus (L.) Moench). Journal of Food Science and Technology 49 (3):378–81. doi:10.1007/s13197-011-0427-8.
  • Poonia, S., A. Singh, D. Jain, and M. Hamasha. 2018. Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Engineering 5 (1):1507084. doi:10.1080/23311916.2018.1507084.
  • Preethi, R., S. M. Deotale, J. A. Moses, and C. Anandharamakrishnan. 2020. Conductive hydro drying of beetroot (Beta vulgaris L) pulp: Insights for natural food colorant applications. Journal of Food Process Engineering 43 (12):e13557. doi:10.1111/jfpe.13557.
  • Rafiq, A., J. Chowdhary, M. K. Hazarika, and H. A. Makroo. 2015. Temperature dependence on hydration kinetic model parameters during rehydration of parboiled rice. Journal of Food Science and Technology 52 (9):6090–94. doi:10.1007/s13197-015-1790-7.
  • Rao, T. S. S., and S. Murugan. 2023. Experimental investigation of drying neem (Azadirachta indica) in an evacuated tube solar dryer: Performance, drying kinetics and characterization. Solar Energy 253:270–84. doi:10.1016/j.solener.2023.02.031.
  • Ricce, C., M. L. Rojas, A. C. Miano, R. Siche, and P. E. D. Augusto. 2016. Ultrasound pretreatment enhances the carrot drying and rehydration. Food Research International 89:701–08. doi:10.1016/j.foodres.2016.09.030.
  • Santos, K. C., J. S. Guedes, M. L. Rojas, G. R. Carvalho, and P. E. D. Augusto. 2021. Enhancing carrot convective drying by combining ethanol and ultrasound as pretreatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics Sonochemistry 70:105304. doi:10.1016/j.ultsonch.2020.105304.
  • Sharifian, F., Z. R. Gharkhloo, A. A. Yamchi, and M. Kaveh. 2023. Infrared and hot drying of saffron petal (Crocus sativus L.): Effect on drying, energy, color, and rehydration. Journal of Food Process Engineering 46 (7):e14342, Jul. doi:10.1111/jfpe.14342.
  • Sharma, S., K. Dhalsamant, P. P. Tripathy, and R. K. Manepally. 2021. Quality analysis and drying characteristics of turmeric (Curcuma longa L.) dried by hot air and direct solar dryers. LWT 138:110687. doi:10.1016/j.lwt.2020.110687.
  • Singh, P., and M. K. Gaur. 2021. Heat transfer analysis of hybrid active greenhouse solar dryer attached with evacuated tube solar collector. Solar Energy 224:1178–92. doi:10.1016/j.solener.2021.06.050.
  • Singh, S., R. S. Gill, V. S. Hans, and T. C. Mittal. 2022. Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development. Energy 241:122794. doi:10.1016/j.energy.2021.122794.
  • Taiwo, K., and O. Adeyemi. 2009. Influence of blanching on the drying and rehydration of banana slices. African Journal of Food Science 3 (10):307–15.
  • Tüfekçi, S., and S. G. Özkal. 2017. Enhancement of drying and rehydration characteristics of okra by ultrasound pretreatment application. Heat and Mass Transfer 53 (7):2279–86. doi:10.1007/s00231-017-1983-x.
  • Tunde-Akintunde, T. 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy 36 (8):2139–45. doi:10.1016/j.renene.2011.01.017.
  • Vijayan, S., T. Arjunan, and A. Kumar. 2016. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science & Emerging Technologies 36:59–67. doi:10.1016/j.ifset.2016.05.014.
  • Vijayan, S., T. V. Arjunan, and A. Kumar. 2020. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renewable Energy 146:2210–23, 1. doi:10.1016/j.renene.2019.08.066.
  • Wang, Z., Y. Diao, Y. Zhao, C. Chen, L. Liang, and T. Wang. 2020. Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays. Applied Energy 261:114466. doi:10.1016/j.apenergy.2019.114466.
  • Wang, H. O., Q. Q. Fu, S. J. Chen, Z. C. Hu, and H. X. Xie. 2018. Effect of hot-water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. Journal of Food Quality 2018:1–12. doi:10.1155/2018/1347513.
  • Wang, J., X. H. Yang, A. S. Mujumdar, D. Wang, J. H. Zhao, X. M. Fang, and H. W. Xiao, L. Xie, Z.-J. Gao, H.-W. Xiao. 2017. Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT 77:337–47. doi:10.1016/j.lwt.2016.11.070.
  • Wang, H., Q. Zhao, and B. Zhao. 2019. Comparison of drying methods on drying efficiency and physicochemical quality of okra (Abelmoschus esculentus) cultivated in China. Journal of Food Process Engineering 42 (6):e13163. doi:10.1111/jfpe.13163.
  • Wu, Y., X. Tong, D. Li, M. Arıcı, C. Liu, Y. Liu, R. Yang, and Y. Yu. 2022. Energy analysis of evacuated tube solar collector integrating phase change material in northeast China. Journal of Energy Storage 55:105772. doi:10.1016/j.est.2022.105772.
  • Xu, H., Y. Guan, C. Shan, W. Xiao, and M. Wu. 2023. Development of thermoultrasound assisted blanching to improve enzyme inactivation efficiency, drying characteristics, energy consumption, and physiochemical properties of sweet potatoes. Ultrasonics Sonochemistry 101:106670. doi:10.1016/j.ultsonch.2023.106670.
  • Xu, X., L. Zhang, Y. Feng, A. ElGasim, A. Yagoub, Y. Sun, H. Ma, and C. Zhou. 2020. Vacuum pulsation drying of okra (Abelmoschus esculentus L. Moench): Better retention of the quality characteristics by flat sweep frequency and pulsed ultrasound pretreatment. Food Chemistry 326:127026. doi:10.1016/j.foodchem.2020.127026.
  • Yadav, D. K., V. K. Arora, A. Singh, S. Malakar, and T. Manonmani. 2023. Evacuated tube collector based solar drying of pre-treated okra (Abelmoschus esculentus): Analysis of thermal performance, bioactive compounds, antioxidant activity, and functional properties. Solar Energy 262:111890. doi:10.1016/j.solener.2023.111890.
  • Zhang, W., K. Wang, and C. Chen. Artificial neural network assisted multiobjective optimization of postharvest blanching and drying of blueberries. Foods 11 (21):3347. October 25, 2022. doi:10.3390/foods11213347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.