14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel cooling system for free-standing photovoltaic panels

, ORCID Icon, , &
Pages 8155-8170 | Received 23 Feb 2024, Accepted 08 Jun 2024, Published online: 26 Jun 2024

References

  • Afsari, K., M. R. S. Emami, S. Zahmatkesh, J. J. Klemeš, and A. Bokhari. 2023. Optimizing the thermal performance of the thermosyphon heat pipe for energy saving with graphene oxide nanofluid. Energy 274:127422. doi:10.1016/j.energy.2023.127422.
  • Agyekum, E. B., S. PraveenKumar, N. T. Alwan, V. I. Velkin, S. E. Shcheklein, and S. J. Yaqoob. 2021. Experimental investigation of the effect of a combination of active and passive cooling mechanism on the thermal characteristics and efficiency of solar PV module. Inventions 6 (4):63. doi:10.3390/inventions6040063.
  • Ahmadian-Elmi, M., M. R. Hajmohammadi, S. S. Nourazar, K. Vafai, and M. B. Shafii. 2023. Effect of filling ratio, number of loops, and transverse distance on the performance of pulsating heat pipe in a microchannel heat sink. Numerical Heat Transfer, Part A: Applications 85 (8):1278–99. doi:10.1080/10407782.2023.2200217.
  • Alexander, K., S. S. Gajghate, A. S. Katarkar, A. Majumder, and S. Bhaumik. 2021. Role of nanomaterials and surfactants for the preparation of graphene nanofluid: A review. Materials Today: Proceedings, vol. 44, 1136–43. doi:10.1016/j.matpr.2020.11.231.
  • Ali, H. M. 2020. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems–A comprehensive review. Solar Energy 197:163–98. doi:10.1016/j.solener.2019.11.075.
  • Alizadeh Jajarm, A. R., H. R. Goshayeshi, and K. Bashirnezhad. 2022. Experimental study of thermal performance of a newly designed pulsating heat pipe with Fe3O4 nanofluid-exposed magnetic field and corrugated evaporator. International Journal of Thermophysics 43 (3):40. doi:10.1007/s10765-021-02971-1.
  • Allouhi, A., and M. Benzakour Amine. 2021. Heat pipe flat plate solar collectors operating with nanofluids. Solar Energy Materials & Solar Cells 219:110798. doi:10.1016/j.solmat.2020.110798.
  • Alqahtani, A. A., S. Edwardson, M. Marengo, and V. Bertola. 2022. Performance of flat-plate, flexible polymeric pulsating heat pipes at different bending angles. Applied Thermal Engineering 216:118948. doi:10.1016/j.applthermaleng.2022.118948.
  • Alshukri, M. J., A. K. Hussein, A. A. Eidan, and A. I. Alsabery. 2022. A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Solar Energy 236:417–33. doi:10.1016/j.solener.2022.03.022.
  • Aste, N., F. Leonforte, and C. Del Pero. 2015. Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy 112:85–99. doi:10.1016/j.solener.2014.11.025.
  • Browne, M. C., B. Norton, and S. J. McCormack. 2016. Heat retention of a photovoltaic/thermal collector with PCM. Solar Energy 133:533–48. doi:10.1016/j.solener.2016.04.024.
  • Chandrika, V. S., A. Karthick, N. M. Kumar, P. M. Kumar, B. Stalin, and M. Ravichandran. 2021. Experimental analysis of solar concrete collector for residential buildings. International Journal of Green Energy 18 (6):615–23. doi:10.1080/15435075.2021.1875468.
  • Chen, F., M. Hu, A. Badiei, M. Yu, Z. Huang, Z. Wang, and X. Zhao. 2020. Experimental and numerical investigation of a novel photovoltaic/thermal system using micro-channel flat loop heat pipe (PV/T-MCFLHP). International Journal of Low-Carbon Technologies 15 (4):513–27. doi:10.1093/ijlct/ctaa019.
  • Coldrick, K., J. Walshe, S. J. McCormack, J. Doran, and G. Amarandei. 2023a. Experimental and theoretical evaluation of a commercial luminescent dye for PVT systems. Energies 16 (17):6294. doi:10.3390/en16176294.
  • Coldrick, K., J. Walshe, S. J. McCormack, J. Doran, and G. Amarandei. 2023b. The role of solar spectral beam splitters in enhancing the solar-energy conversion of existing PV and PVT technologies. Energies 16 (19):6841. doi:10.3390/en16196841.
  • Dai, Y., R. Zhang, Z. Qin, K. Liu, C. Liu, and J. Zhao. 2024. Research on the thermal performance and stability of three-dimensional array pulsating heat pipe for active/passive coupled thermal management application. Applied Thermal Engineering 245:122793. doi:10.1016/j.applthermaleng.2024.122793.
  • Divitini, G., S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, and C. Ducati. 2016. In situ observation of heat-induced degradation of perovskite solar cells. Nature Energy 1 (2):1–6. doi:10.1038/nenergy.2015.12.
  • Gyamfi, B. A., P. A. Kwakwa, and T. S. Adebayo. 2023. Energy intensity among European Union countries: The role of renewable energy, income and trade. International Journal of Energy Sector Management 17 (4):801–19. doi:10.1108/IJESM-05-2022-0018.
  • Hasan, H. A., J. S. Sherza, J. M. Mahdi, H. Togun, A. M. Abed, R. K. Ibrahim, and W. Yaïci. 2022. Experimental evaluation of the thermoelectrical performance of photovoltaic-thermal systems with a water-cooled heat sink. Sustainability 14 (16):10231. doi:10.3390/su141610231.
  • Hassan, A., S. Abbas, S. Yousuf, F. Abbas, N. M. Amin, S. Ali, and M. S. Mastoi. 2023. An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system. Renewable Energy 202:499–512. doi:10.1016/j.renene.2022.11.087.
  • He, Y., D. Jiao, G. Pei, X. Hu, and L. He. 2020. Experimental study on a three-dimensional pulsating heat pipe with tandem tapered nozzles. Experimental Thermal and Fluid Science 119:110201. doi:10.1016/j.expthermflusci.2020.110201.
  • Huang, P., Y. Li, G. Yang, Z. X. Li, Y. Q. Li, N. Hu, and S.-Y. Fu, K. S. Novoselov. 2021. Graphene film for thermal management: A review. Nano Materials Science 3 (1):1–16. doi:10.1016/j.nanoms.2020.09.001.
  • Jose, J., and T. K. Hotta. 2023. A comprehensive review of heat pipe: Its types, incorporation techniques, methods of analysis and applications. Thermal Science and Engineering Progress 101860:101860. doi:10.1016/j.tsep.2023.101860.
  • Kargaran, M., H. R. Goshayeshi, H. Pourpasha, I. Chaer, and S. Z. Heris. 2022. An extensive review on the latest developments of using oscillating heat pipe on cooling of photovoltaic thermal system. Thermal Science and Engineering Progress 36:101489. doi:10.1016/j.tsep.2022.101489.
  • Kaya, M., A. Etem Gürel, Ü. Ağbulut, İ. Ceylan, S. Çelik, A. Ergün, and B. Acar. 2019. Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe. Energy Conversion and Management 199:111936. doi:10.1016/j.enconman.2019.111936.
  • Lan, H. H. 2020. The manufacturing of a large-scale pulsating heat pipe and its heat transfer performance [D]. North China Electric Power University.
  • Li, G., T. M. Diallo, Y. G. Akhlaghi, S. Shittu, X. Zhao, X. Ma, and Y. Wang. 2019. Simulation and experiment on thermal performance of a micro-channel heat pipe under different evaporator temperatures and tilt angles. Energy 179:549–57. doi:10.1016/j.energy.2019.05.040.
  • Li, M., L. Li, and D. Xu. 2019. Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe. Cryogenics 100:62–68. doi:10.1016/j.cryogenics.2019.04.006.
  • Li, S., H. Pei, D. Liu, Y. Shen, X. Tao, and Z. Gan. 2023. Visualization study on the flow characteristics of a nitrogen pulsating heat pipe. International Communications in Heat and Mass Transfer 143:106722. doi:10.1016/j.icheatmasstransfer.2023.106722.
  • Li, H., J. Ren, D. Yin, G. Lu, C. Du, X. Jin, and Y. Jia. 2022. Effects of inclination angle and heat power on heat transfer behavior of flat heat pipe with bionic grading microchannels. Applied Thermal Engineering 206:118079. doi:10.1016/j.applthermaleng.2022.118079.
  • Liu, X., L. Xu, C. Wang, and X. Han. 2019. Experimental study on thermo-hydrodynamic characteristics in a micro oscillating heat pipe. Experimental Thermal and Fluid Science 109:109871. doi:10.1016/j.expthermflusci.2019.109871.
  • Natsume, K., T. Mito, N. Yanagi, H. Tamura, T. Tamada, K. Shikimachi, and N. Hirano, S. Nagaya. 2011. Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets. Cryogenics 51 (6):309–14. doi:10.1016/j.cryogenics.2010.07.001.
  • Nazari, M. A., R. Ghasempour, M. H. Ahmadi, G. Heydarian, and M. B. Shafii. 2018. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. International Communications in Heat and Mass Transfer 91:90–94. doi:10.1016/j.icheatmasstransfer.2017.12.006.
  • Novoselov, K. S., P. Blake, and M. I. Katsnelson. 2008. Graphene: Electronic properties. 1–6.
  • Omri, M., F. Selimefendigil, H. T. Smaoui, and L. Kolsi. 2022. Cooling system design for photovoltaic thermal management by using multiple porous deflectors and nanofluid. Case Studies in Thermal Engineering 39:102405. doi:10.1016/j.csite.2022.102405.
  • Pagliarini, L., N. Iwata, and F. Bozzoli. 2023. Pulsating heat pipes: Critical review on different experimental techniques. Experimental Thermal and Fluid Science 148:110980. doi:10.1016/j.expthermflusci.2023.110980.
  • Qian, N., F. Jiang, M. Marengo, Y. Fu, and J. Xu. 2023. Thermal performance of a radial-rotating oscillating heat pipe and its application in grinding processes with enhanced heat transfer. Applied Thermal Engineering 233:121213. doi:10.1016/j.applthermaleng.2023.121213.
  • Qu, J., J. T. Zhao, and Z. H. Rao. 2017. Experimental investigation on thermal performance of multi-layers three-dimensional oscillating heat pipes. International Journal of Heat and Mass Stansfer 115:810–19. doi:10.1016/j.ijheatmasstransfer.2017.08.082.
  • Razali, S. N., A. Ibrahim, A. Fazlizan, M. F. Fauzan, R. K. Ajeel, E. Z. Ahmad, and W. E. Ewe, H. A. Kazem. 2023. Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS). Case Studies in Thermal Engineering 50:103400. doi:10.1016/j.csite.2023.103400.
  • Rittidech, S., A. Donmaung, and K. Kumsombut. 2009. Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV. Renewable Energy 34 (10):2234–38. doi:10.1016/j.renene.2009.03.021.
  • Rouhani, A., M. Abdollahpour, M. Golzarian, and H. Abutorabi Zarchi. 2017. Optimal angle for solar panels to receive maximum radiation: case of mashhad city. Iranian Journal of Energy 20 (2):103–25.
  • Sadeghinezhad, E., M. Mehrali, R. Saidur, M. Mehrali, S. T. Latibari, A. R. Akhiani, and H. S. C. Metselaar. 2016. A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Conversion and Management 111:466–87. doi:10.1016/j.enconman.2016.01.004.
  • Salarnia, M., D. Toghraie, M. A. Fazilati, B. Mehmandoust, and M. Pirmoradian. 2023. The effects of different nanoparticles on physical and thermal properties of water in a copper oscillating heat pipe via molecular dynamics simulation. Journal of the Taiwan Institute of Chemical Engineers 143:104721. doi:10.1016/j.jtice.2023.104721.
  • Santbergen, R., V. A. Muthukumar, R. M. E. Valckenborg, W. J. A. van de Wall, A. H. M. Smets, and M. Zeman. 2017. Calculation of irradiance distribution on PV modules by combining sky and sensitivity maps. Solar Energy 150:49–54. doi:10.1016/j.solener.2017.04.036.
  • Su, Z., Y. Hu, S. Zheng, T. Wu, K. Liu, M. Zhu, and J. Huang. 2022. Recent advances in visualization of pulsating heat pipes: A review. Applied Thermal Engineering 221:119867. doi:10.1016/j.applthermaleng.2022.119867.
  • Tawfik, M. M. 2017. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renewable and Sustainable Energy Reviews 75:1239–53. doi:10.1016/j.rser.2016.11.111.
  • Tiwari, A. K., K. Chatterjee, S. Agrawal, and G. K. Singh. 2023. A comprehensive review of photovoltaic-thermal (PVT) technology: Performance evaluation and contemporary development. Energy Reports 10:2655–79. doi:10.1016/j.egyr.2023.09.043.
  • Wang, X., Q. Wen, J. Yang, J. Xiang, Z. Wang, C. Weng, and F. Chen, S. Zheng. 2022. A review on data centre cooling system using heat pipe technology. Sustainable Computing: Informatics and Systems 35:100774. doi:10.1016/j.suscom.2022.100774.
  • Wang, G., Y. Yang, W. Yu, T. Wang, and T. Zhu. 2022. Performance of an air-cooled photovoltaic/thermal system using micro heat pipe array. Applied Thermal Engineering 217:119184. doi:10.1016/j.applthermaleng.2022.119184.
  • Yazdanpanahi, J., F. Sarhaddi, and M. M. Adeli. 2015. Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses. Solar Energy 118:197–208. doi:10.1016/j.solener.2015.04.038.
  • Zamanifard, A., M. Muneeshwaran, Y. H. Wang, and C. C. Wang. 2023. A novel 3-D pulsating heat pipe module for high heat-flux applications. Applied Thermal Engineering 228:120549. doi:10.1016/j.applthermaleng.2023.120549.
  • Zhan, J., X. Chen, Y. Ji, P. Zheng, and W. Duan. 2023. Experimental study of ethane pulsating heat pipe with varying evaporator lengths based on pulse tube refrigerator. International Journal of Refrigeration 145:40–49. doi:10.1016/j.ijrefrig.2022.09.010.
  • Zhang, Q., S. He, T. Song, M. Wang, Z. Liu, J. Zhao, and Y. Shi, X. Huang, K. Han, J. Qi. 2023. Modeling of a PV system by a back-mounted spray cooling section for performance improvement. Applied Energy 332:120532. doi:10.1016/j.apenergy.2022.120532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.