11
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Studies on hybrid solar collector with water driven solar tracking unit

, ORCID Icon, , ORCID Icon &
Pages 8108-8131 | Received 04 Dec 2023, Accepted 12 Jun 2024, Published online: 26 Jun 2024

References

  • Afanasyeva, S., D. Bogdanov, and C. Breyer. 2018. Relevance of PV with single-axis tracking for energy scenarios. Solar Energy 173 (June):173–91. doi:10.1016/j.solener.2018.07.029.
  • Al-Amayreh, M. I., and A. Alahmer. 2022. ScienceDirect on improving the efficiency of hybrid solar lighting and thermal system using dual-axis solar tracking system. Energy Reports 8:841–47. doi:10.1016/j.egyr.2021.11.080.
  • AL-Rousan, N., N. A. M. Isa, and M. K. M. Desa. 2018. Advances in solar photovoltaic tracking systems: A review. Renewable and Sustainable Energy Reviews 82 (September):2548–69. doi:10.1016/j.rser.2017.09.077.
  • Batayneh, W., A. Bataineh, I. Soliman, and S. A. Hafees. 2019. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Automation in Construction 98 (November 2018):102–09. doi:10.1016/j.autcon.2018.11.011.
  • Danish, S. N., H. Al-Ansary, A. El-Leathy, M. Ba-Abbad, S. U. D. Khan, A. Rizvi, J. Orfi, and A. Al-Nakhli. 2022. Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector. Energy 261 (PA):125035. doi:10.1016/j.energy.2022.125035.
  • Ekbatani, A., B. Mostajeran Goortani, and M. Karbalaei. 2024. Performance enhancement of photovoltaic module using a sun tracker with side reflectors (STSR system). International Journal of Green Energy 21 (1):64–73. doi:10.1080/15435075.2023.2194971.
  • Elsayed, A. A., E. E. Khalil, M. A. Kassem, and O. A. Huzzayin. 2021. A novel mechanical solar tracking mechanism with single axis of tracking for developing countries. Renewable Energy 170:1129–42. doi:10.1016/j.renene.2021.02.058.
  • Fathabadi, H. 2016. Comparative study between two novel sensorless and sensor based dual- axis solar trackers. Solar Energy 138:67–76. doi:10.1016/j.solener.2016.09.009.
  • Fathabadi, H. 2020. Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors. Solar Energy 195:210–22. doi:10.1016/j.solener.2019.11.057.
  • Gutierrez, S., P. M. Rodrigo, J. Alvarez, A. Acero, and A. Montoya. 2020. Development and testing of a single-axis photovoltaic sun tracker through the internet of things. Energies 13 (10):2547. doi:10.3390/en13102547.
  • Hafez, A. Z., A. M. Yousef, and N. M. Harag. 2018. Solar tracking systems: Technologies and trackers drive types – a review. Renewable and Sustainable Energy Reviews 91 (March):754–82. doi:10.1016/j.rser.2018.03.094.
  • IEA. 2023. World energy outlook 2023, IEA, Paris. https: //www.Iea.org/reports/world-energy-outlook-2023,Licence:CCby4.0 (report);CCbyNCSA4.0(Annex A).
  • Jamroen, C., P. Komkum, S. Kohsri, W. Himananto, S. Panupintu, and S. Unkat. 2020. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments 37 (October 2019):100618. doi:10.1016/j.seta.2019.100618.
  • Natarajan, M., and T. Srinivas. 2017. Experimental and simulation studies on a novel gravity based passive tracking system for a linear solar concentrating collector. Renewable Energy 105:312–23. doi:10.1016/j.renene.2016.12.060.
  • Popiel, C. O., and J. Wojtkowiak. 1998. Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0°C to 150°C). Heat Transfer Engineering 19 (3):87–101. doi:10.1080/01457639808939929.
  • Racharla, S., and K. Rajan. 2017. Solar tracking system–a review. International Journal of Sustainable Engineering 10 (2):72–81. doi:10.1080/19397038.2016.1267816.
  • Reddy, K. S., and C. Ananthsornaraj. 2020. Design, development and performance investigation of solar parabolic trough Collector for large-scale solar power plants. Renewable Energy 146:1943–57. doi:10.1016/j.renene.2019.07.158.
  • Reddy, K. S., A. Parthiban, and T. K. Mallick. 2020. Numerical modeling of heat losses in a line focusing solar compound parabolic concentrator with planar absorber. Applied Thermal Engineering 181 (May):115938. doi:10.1016/j.applthermaleng.2020.115938.
  • Research & Education Association, Inc. 1989. The essentials of strength of materials and mechanics of solids I, vol. 1. Piscataway, NJ, United States: Research & Education Association, Inc.
  • Saymbetov, A., S. Mekhilef, N. Kuttybay, M. Nurgaliyev, D. Tukymbekov, A. Meiirkhanov, G. Dosymbetova, and Y. Svanbayev. 2021. Dual-axis schedule tracker with an adaptive algorithm for a strong scattering of sunbeam. Solar Energy 224 (March):285–97. doi:10.1016/j.solener.2021.06.024.
  • Seme, S., G. Srpčič, D. Kavšek, S. Božičnik, T. Letnik, Z. Praunseis, B. Štumberger, and M. Hadžiselimović. 2017. Dual-axis photovoltaic tracking system – Design and experimental investigation. Energy 139:1267–74. doi:10.1016/j.energy.2017.05.153.
  • Sidek, M. H. M., N. Azis, W. Z. W. Hasan, M. Z. A. Ab Kadir, S. Shafie, and M. A. M. Radzi. 2017. Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy 124:160–70. doi:10.1016/j.energy.2017.02.001.
  • Skouri, S., A. Ben Haj Ali, S. Bouadila, M. Ben Salah, and S. Ben Nasrallah. 2016. Design and construction of sun tracking systems for solar parabolic concentrator displacement. Renewable and Sustainable Energy Reviews 60:1419–29. doi:10.1016/j.rser.2016.03.006.
  • Sridhar, K., G. Lingaiah, G. V. Kumar, S. A. Kumar, and G. Ramakrishna. 2018. Performance of cylindrical parabolic Collector with automated tracking system 1. Applied Solar Energy 54 (2):134–38. doi:10.3103/S0003701X18020135.
  • Sukhatme, S. P., and J. K. Nayak. 2017. Solar Energy. McGraw Hill Education. https://books.google.co.in/books?id=QUNODwAAQBAJ.
  • Tao, T., Z. Hongfei, H. Kaiyan, and A. Mayere. 2011. A new trough solar concentrator and its performance analysis. Solar Energy 85 (1):198–207. doi:10.1016/j.solener.2010.08.017.
  • Teles, M. D. P. R., K. A. R. Ismail, and A. Arabkoohsar. 2019. A new version of a low concentration evacuated tube solar collector: Optical and thermal investigation. Solar Energy 180 (October 2018):324–39. doi:10.1016/j.solener.2019.01.039.
  • Wang, Q., Y. Yao, Z. Shen, and H. Yang. 2023. A hybrid parabolic trough solar collector system integrated with photovoltaics. Applied Energy 329 (May 2022):120336. doi:10.1016/j.apenergy.2022.120336.
  • Wang, Y., Y. Zhu, H. Chen, X. Zhang, L. Yang, and C. Liao. 2015. Performance analysis of a novel sun-tracking CPC heat pipe evacuated tubular collector. Applied Thermal Engineering 87:381–88. doi:10.1016/j.applthermaleng.2015.04.045.
  • Widyolar, B., L. Jiang, J. Ferry, and R. Winston. 2018. Non-tracking east-west XCPC solar thermal collector for 200 Celsius applications. Applied Energy 216 (November 2017):521–33. doi:10.1016/j.apenergy.2018.02.031.
  • Yuan, G., J. Fan, W. Kong, S. Furbo, B. Perers, and F. Sallaberry. 2020. Experimental and computational fluid dynamics investigations of tracking CPC solar collectors. Solar Energy 199 (January):26–38. doi:10.1016/j.solener.2020.01.090.
  • Zaghba, L., M. Khennane, S. Mekhilef, A. Fezzani, and A. Borni. 2022. Experimental outdoor performance assessment and energy efficiency of 11.28 kWp grid tied PV systems with sun tracker installed in Saharan climate: A case study in Ghardaia, Algeria. Solar Energy 243 (July):174–92. doi:10.1016/j.solener.2022.07.045.
  • Zhang, H., H. Chen, Y. Han, H. Liu, and M. Li. 2017. Experimental and simulation studies on a novel compound parabolic concentrator. Renewable Energy 113:784–94. doi:10.1016/j.renene.2017.06.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.