13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on pyrolysis of ultra-high-quality oil shale: product characterization and a utilization process

, , , , , , , , & ORCID Icon show all
Pages 8132-8143 | Received 26 Oct 2023, Accepted 06 May 2024, Published online: 26 Jun 2024

References

  • Abduhani, H., Y. Tursun, A. Abulizi, D. Talifu, and X. Huang. 2021. Characteristics and kinetics of the gas releasing during oil shale pyrolysis in a micro fluidized bed reactor. Journal of Analytical and Applied Pyrolysis 157:105187. doi: 10.1016/j.jaap.2021.105187.
  • Amer, M. W., J. S. Aljariri Alhesan, M. Marshall, A. M. Awwad, and O. S. Al-Ayed. 2019. Characterization of Jordanian oil shale and variation in oil properties with pyrolysis temperature. Journal of Analytical and Applied Pyrolysis 140:219–26. doi: 10.1016/j.jaap.2019.03.019.
  • Baruah, B., and P. Tiwari. 2022. Compositional and kinetic study of thermal degradation of kerogen using TG-FTIR, NMR, and microscopic study. AichE Journal 68 (1):e17396. doi: 10.1002/aic.17396.
  • Biglarbigi, K., P. Crawford, M. Carolus, and C. Dean. 2010. Rethinking world oil-shale resource estimates. SPE Annual Technical Conference and Exhibition, Vol. All Days, Florence, Italy.
  • Brandt, A. R. 2009. Converting oil shale to liquid fuels with the Alberta Taciuk Processor: Energy inputs and greenhouse gas emissions. Energy and Fuels 23 (12):6253–58. doi: 10.1021/ef900678d.
  • Chen, Z., Y. Tian, D. Lai, J.-H. Zhan, Z. Han, G. Xu, and S. Gao. 2020. Oil shale pyrolysis in a moving bed with internals enhanced by rapid preheating in a heated drop tube. Energy Conversion and Management 224:113358. doi: 10.1016/j.enconman.2020.113358.
  • Cui, D., J. Li, X. Zhang, L. Zhang, H. Chang, and Q. Wang. 2021. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD. Journal of Analytical and Applied Pyrolysis 153:104980. doi: 10.1016/j.jaap.2020.104980.
  • Ding, H., Y. Ma, S. Li, Q. Wang, W. Hong, H. Jiang, H. Li, and M. Jiang. 2022. Pyrolytic characteristics of Fushun oil shale and its by-products. Journal of Thermal Analysis and Calorimetry 147 (8):5255–67. doi: 10.1007/s10973-021-10870-8.
  • Freidin, C. 2005. Influence of variability of oil shale fly ash on compressive strength of cementless building compounds. Construction and Building Materials 19 (2):127–33. doi: 10.1016/j.conbuildmat.2004.05.015.
  • Golubev, N. 2003. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale 20 (3S):324–32. doi: 10.3176/oil.2003.3S.05.
  • Han, X., Y. Huang, X. Wang, Y. Wang, and X. Jiang. 2021. Studies of the bubbling fluidized bed retorting of dachengzi oil shale: 1. Effect of Retorting Temperature, Energy & Fuels 35 (3):2838–44. doi: 10.1021/acs.energyfuels.0c03727.
  • Han, X., I. Kulaots, X. Jiang, and E. M. Suuberg. 2014. Review of oil shale semicoke and its combustion utilization. Fuel 126:143–61. doi: 10.1016/j.fuel.2014.02.045.
  • Herod, A. A., K. D. Bartle, and R. Kandiyoti. 2007. Characterization of heavy hydrocarbons by chromatographic and mass spectrometric methods: An overview. Energy & Fuels 21 (4):2176–203. doi: 10.1021/ef060642t.
  • Jiang, X., D. Chen, Z. Ma, and J. Yan. 2017. Models for the combustion of single solid fuel particles in fluidized beds: A review. Renewable and Sustainable Energy Reviews 68:410–31.
  • Lan, X., W. Luo, Y. Song, J. Zhou, and Q. Zhang. 2015. Effect of the temperature on the characteristics of retorting products obtained by yaojie oil shale pyrolysis. Energy and Fuels 29 (12):7800–06. doi: 10.1021/acs.energyfuels.5b01645.
  • Matsueda, M., M. Mattonai, I. Iwai, A. Watanabe, N. Teramae, W. Robberson, H. Ohtani, Y.-M. Kim, and C. Watanabe. 2021. Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS. Journal of Analytical and Applied Pyrolysis 154:104993. doi: 10.1016/j.jaap.2020.104993.
  • Pan, L., F. Dai, S. Pei, J. Huang, and S. Liu. 2021. Influence of particle size and temperature on the yield and composition of products from the pyrolysis of Jimsar (China) oil shale. Journal of Analytical and Applied Pyrolysis 157:105211. doi: 10.1016/j.jaap.2021.105211.
  • Qian, J., and J. Wang. 2006. World oil shale retorting technologies. International Conference on Oil Shale ⌠ Recent Trends in Oil Shale, Citeseer 1: 7–9.
  • Raukas, A., and J. M. Punning. 2009. Environmental problems in the Estonian oil shale industry. Energy & Environmental Science 2 (7):723–28. doi: 10.1039/b819315k.
  • Seo, D. K., S. S. Park, Y. T. Kim, J. Hwang, and T.-U. Yu. 2011. Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. Journal of Analytical and Applied Pyrolysis 92 (1):209–16. doi: 10.1016/j.jaap.2011.05.012.
  • Shi, L., Q. Liu, X. Guo, W. Wu, and Z. Liu. 2013. Pyrolysis behavior and bonding information of coal — a TGA study. Fuel Processing Technology 108:125–32. doi: 10.1016/j.fuproc.2012.06.023.
  • Smidth, S. 2003. New directions for shale oil: Path to a secure new oil supply well into this century. Oil Shale 20 (3S):333–46. doi: 10.3176/oil.2003.3S.06.
  • Speight, J. G. 2012. Shale oil production processes. Oxford, UK: Gulf Professional Publishing.
  • Taheri-Shakib, J., and A. Kantzas. 2021. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel 305:121519. doi: 10.1016/j.fuel.2021.121519.
  • Wang, J., J. Du, L. Chang, and K. Xie. 2010. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel Processing Technology 91 (4):430–33. doi: 10.1016/j.fuproc.2009.04.020.
  • Wang, L., D. Yang, Z. Kang, J. Zhao, and Q. Meng. 2022. Experimental study on the effects of steam temperature on the pore-fracture evolution of oil shale exposed to the convection heating. Journal of Analytical and Applied Pyrolysis 164:105533. doi: 10.1016/j.jaap.2022.105533.
  • Wan, G., J. Yu, X. Wang, and L. Sun. 2022. Study on the pyrolysis behavior of coal-water slurry and coal-oil-water slurry. Journal of the Energy Institute 100:10–21.
  • Yang, D., L. Wang, Y. Zhao, and Z. Kang. 2021. Investigating pilot test of oil shale pyrolysis and oil and gas upgrading by water vapor injection. Journal of Petroleum Science and Engineering 196:108101. doi: 10.1016/j.petrol.2020.108101.
  • Yu, F., P. Sun, K. A. Zhao, L. Ma, and X. Tian. 2020. Experimental constraints on the evolution of organic matter in oil shales during heating: Implications for enhanced in situ oil recovery from oil shales. Fuel 261:116412. doi: 10.1016/j.fuel.2019.116412.
  • Zhao, Y., C. Xing, C. Shao, G. Chen, S. Sun, G. Chen, L. Zhang, J. Pei, P. Qiu, and S. Guo. 2020. Impacts of intrinsic alkali and alkaline earth metals on chemical structure of low-rank coal char: Semi-quantitative results based on FT-IR structure parameters. Fuel 278:118229. doi: 10.1016/j.fuel.2020.118229.
  • Zhou, A., X. Wang, S. Yu, S. Deng, H. Tan, and H. Mikulčić. 2023. Process design and optimization on self-sustaining pyrolysis and carbonization of municipal sewage sludge. Waste Management 159:125–33. doi: 10.1016/j.wasman.2023.01.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.