22
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical modeling and parametric optimization of a dual media tank thermal energy storage system for enhanced industrial heat processes

, ORCID Icon &
Pages 7736-7754 | Received 07 Nov 2023, Accepted 20 May 2024, Published online: 26 Jun 2024

References

  • Abdulla, A., and K. S. Reddy. 2017. Effect of operating parameters on thermal performance of molten salt packed-bed thermocline thermal energy storage system for concentrating solar power plants. International Journal of Thermal Sciences 121:30–44, November. doi:10.1016/j.ijthermalsci.2017.07.004.
  • Al-Azawii, M. M. S., C. Theade, M. Danczyk, E. Johnson, and R. Anderson. 2018. Experimental study on the cyclic behavior of thermal energy storage in an air-alumina packed bed. Journal of Energy Storage 18:239–49, August. doi:10.1016/j.est.2018.05.008.
  • Ammar, A. S. A., and A. A. Ghoneim. 1991. Optimization of a sensible heat storage unit packed with spheres of a local material. Renewable Energy 1 (1):91–95. doi:10.1016/0960-1481(91)90107-Z.
  • Anderson, R., L. Bates, E. Johnson, and J. F. Morris. 2015. Packed bed thermal energy storage: A simplified experimentally validated model. Journal of Energy Storage 4:14–23, December. doi:10.1016/j.est.2015.08.007.
  • Anderson, R., S. Shiri, H. Bindra, and J. F. Morris. 2014. Experimental results and modeling of energy storage and recovery in a packed bed of alumina particles. Applied Energy 119:521–29, April. doi:10.1016/j.apenergy.2014.01.030.
  • Ann Cruickshank, C., and C. Baldwin. 2016. Sensible thermal energy storage: diurnal and seasonal. In Storing energy: With special reference to renewable energy sources, 291–311. Elsevier Inc. doi:10.1016/B978-0-12-803440-8.00015-4.
  • Bruch, A., J. F. Fourmigué, and R. Couturier. 2014. Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant. Solar Energy 105:116–25. doi:10.1016/j.solener.2014.03.019.
  • Cano-Pleite, E., F. Hernández-Jiménez, L. M. García-Gutiérrez, and A. Soria-Verdugo. 2023. Thermo-economic optimization of a novel confined thermal energy storage system based on granular material. Applied Thermal Engineering 224:120123, April. doi:10.1016/j.applthermaleng.2023.120123.
  • Cascetta, M., G. Cau, P. Puddu, and F. Serra. 2015. A study of a packed-bed thermal energy storage device: Test rig, experimental and numerical results. Energy procedia, 987–94. doi:10.1016/j.egypro.2015.12.157.
  • Chavan, S., R. Rudrapati, and S. Manickam. 2022. A comprehensive review on current advances of thermal energy storage and its applications. Alexandria Engineering Journal 61 (7):5455–63, Jul. doi:10.1016/j.aej.2021.11.003.
  • Coutiert, J. P., and E. A. Farber. 1982. TWO APPLICATIONS of a NUMERICAL APPROACH of HEAT TRANSFER PROCESS within ROCK BEDS. Solar Energy 29 (6):451–62. doi:10.1016/0038-092X(82)90053-6.
  • Cruickshank, C. A., and C. Baldwin. 2022. Sensible thermal energy storage: Diurnal and seasonal. In Storing energy: With special reference to renewable energy sources, ed. T. M. Letcher, 419–41. Elsevier. doi:10.1016/B978-0-12-824510-1.00018-0.
  • Eddemani, A., L. Bouirden, A. Aharoune, R. Ait El Cadi, and A. Ihlal. Effect of thermal properties of storage material on packed bed performance. www.ijert.org.
  • ELSihy, E. S., Z. Liao, C. Xu, and X. Du. 2021. Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid. International Journal of Heat and Mass Stansfer 165:120677, February. doi:10.1016/j.ijheatmasstransfer.2020.120677.
  • Gaviño, D., E. Cortés, J. García, I. Calderón-Vásquez, J. Cardemil, D. Estay, and R. Barraza. 2022. A discrete element approach to model packed bed thermal storage. Applied Energy 325:119821, November. doi:10.1016/j.apenergy.2022.119821.
  • Giaconia, A., A. C. Tizzoni, S. Sau, N. Corsaro, E. Mansi, A. Spadoni, and T. Delise. 2021. Assessment and perspectives of heat transfer fluids for csp applications. Procedia - Social and Behavioral Sciences Elsevier BV 14 (22):7486, November. doi:10.3390/en14227486.
  • Grirate, H., H. Agalit, N. Zari, A. Elmchaouri, S. Molina, and R. Couturier. Experimental and numerical investigation of potential filler materials for thermal oil thermocline storage. Solar Energy 131. Elsevier Ltd, pp. 260–74. Jun 1, 2016. doi:10.1016/j.solener.2016.02.035.
  • Hänchen, M., S. Brückner, and A. Steinfeld. 2011. High-temperature thermal storage using a packed bed of rocks – Heat transfer analysis and experimental validation. Applied Thermal Engineering 31 (10):1798–806, Jul. doi:10.1016/J.APPLTHERMALENG.2010.10.034.
  • Han, X., C. Zeng, S. Liu, Z. Wang, S. Deng, and H. Zhang. 2023. Numerical study on the heat and mass transfer in charging and discharging processes of a triangular honeycomb thermochemical energy storage reactor. Applied Thermal Engineering 219:119499, January. doi:10.1016/j.applthermaleng.2022.119499.
  • Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2016. A thermocline thermal energy storage system with filler materials for concentrated solar power plants: Experimental data and numerical model sensitivity to different experimental tank scales. Applied Thermal Engineering 100:753–61, May. doi:10.1016/j.applthermaleng.2016.01.110.
  • Hoffmann, J. F., T. Fasquelle, V. Goetz, and X. Py. 2017. Experimental and numerical investigation of a thermocline thermal energy storage tank. Applied Thermal Engineering 114:896–904. doi:10.1016/j.applthermaleng.2016.12.053.
  • Ismail, K. A. R., and R. Stuginsky. 1999, July. A parametric study on possible ®xed bed models for pcm and sensible heat storage. Applied Thermal Engineering 19(7): 757–788. doi:10.1016/S1359-4311(98)00081-7.
  • Keilany, M. A., M. Milhé, J. J. Bézian, Q. Falcoz, and G. Flamant. 2020. Experimental evaluation of vitrified waste as solid fillers used in thermocline thermal energy storage with parametric analysis. Journal of Energy Storage 29:101285, June. doi:10.1016/j.est.2020.101285.
  • Khurana, H., R. Majumdar, and S. K. Saha. 2023. Thermal stratification characteristics during simultaneous charging and discharging for different storage tank geometries with immersed discharging coil. Applied Thermal Engineering 225:120235, May. doi:10.1016/j.applthermaleng.2023.120235.
  • Kocak, B., and H. Paksoy. 2020. Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications. Solar Energy 211:1335–46, November. doi:10.1016/j.solener.2020.10.070.
  • Kunwer, R., S. Pandey, and G. Pandey. Technical challenges and their solutions for integration of sensible thermal energy storage with concentrated solar power applications—a review. Process Integration & Optimization for Sustainability 6(3): Springer, pp. 559–85. September 1, 2022. doi:10.1007/s41660-022-00231-9.
  • Lai, Z., H. Zhou, M. Zhou, L. Lv, H. Meng, and K. Cen. 2022. Experimental study on storage performance of packed bed solar thermal energy storage system using sintered ore particles. Solar Energy Materials & Solar Cells 238:111654, May. doi:10.1016/j.solmat.2022.111654.
  • Li, Q., W. Lin, X. Huang, Y. Tai, X. Ding, Y. Zhang, and W. Gao. 2022. Thermocline dynamics in a thermally stratified water tank under different operation modes. Applied Thermal Engineering 212:118560, Jul. doi:10.1016/j.applthermaleng.2022.118560.
  • Mao, Q., and W. Cao. 2023. Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system. Energy 273:127166, Jun. doi:10.1016/j.energy.2023.127166.
  • Müller-Trefzer, F., K. Niedermeier, M. Daubner, and T. Wetzel. 2022. Experimental investigations on the design of a dual-media thermal energy storage with liquid metal. Applied Thermal Engineering 213:118619, August. doi:10.1016/j.applthermaleng.2022.118619.
  • Ortega, I., A. Faik, A. Gil, J. Rodríguez-Aseguinolaza, and B. D’Aguanno. 2015. Thermo-physical Properties of a Steel-making by-product to be used as Thermal Energy Storage Material in a Packed-bed System. Energy procedia, 968–77. doi:10.1016/j.egypro.2015.03.180.
  • Sathishkumar, A., and M. Cheralathan. 2023. Charging and discharging processes of low capacity nano-PCM based cool thermal energy storage system: An experimental study. Energy 263:125700, January. doi:10.1016/j.energy.2022.125700.
  • Tiskatine, R., A.E Eddemani, L. Gourdo, B. Abnay, A. Ihlal, A. Aharoune, and L. Bouirden. 2016. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Applied Energy 171:243–55, Jun. doi:10.1016/j.apenergy.2016.03.061.
  • Tuttle, J. F., N. White, K. Mohammadi, and K. Powell. 2020. A novel dynamic simulation methodology for high temperature packed-bed thermal energy storage with experimental validation. Sustainable Energy Technologies and Assessments 42:100888, December. doi:10.1016/J.SETA.2020.100888.
  • Vijjapu, R., and S. Tiwari. 2022. Thermodynamics of sensible thermal energy storage systems. In Encyclopedia of energy storage, ed. L. F. Cabeza, 171–85. Elsevier. doi:10.1016/b978-0-12-819723-3.00149-9.
  • Walayat, K., J. Duesmann, T. Derks, A. Houshang Mahmoudi, R. Cuypers, and M. Shahi. 2021. Experimental and numerical investigations for effective thermal conductivity in packed beds of thermochemical energy storage materials. Applied Thermal Engineering 193:117006, Jul. doi:10.1016/j.applthermaleng.2021.117006.
  • Xie, B., N. Baudin, J. Soto, Y. Fan, and L. Luo. 2023. Experimental and numerical study on the thermocline behavior of packed-bed storage tank with sensible fillers. Renew Energy 209:106–21, Jun. doi:10.1016/j.renene.2023.03.107.
  • Xu, C., M. Liu, S. Jiao, H. Tang, and J. Yan. 2022. Experimental study and analytical modeling on the thermocline hot water storage tank with radial plate-type diffuser. International Journal of Heat and Mass Stansfer 186:122478, May. doi:10.1016/j.ijheatmasstransfer.2021.122478.
  • Yang, B., F. Bai, Y. Wang, and Z. Wang. 2019. Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling. Applied Energy 238:135–46, March. doi:10.1016/j.apenergy.2019.01.073.
  • Yang, X., X. Yang, J. Ding, Y. Shao, F. G. F. Qin, and R. Jiang. 2012. Criteria for performance improvement of a molten salt thermocline storage system. Applied Thermal Engineering 48:24–31, December. doi:10.1016/J.APPLTHERMALENG.2012.04.046.
  • Yin, H., J. Ding, R. Jiang, and X. Yang. 2017. Thermocline characteristics of molten-salt thermal energy storage in porous packed-bed tank. Applied Thermal Engineering 110:855–63, January. doi:10.1016/j.applthermaleng.2016.08.214.
  • Yin, H., J. Ding, and X. Yang. 2014. Experimental research on thermal characteristics of a hybrid thermocline heat storage system. Applied Thermal Engineering 62 (1):293–301. doi:10.1016/j.applthermaleng.2013.09.018.
  • Zhao, Y., C. Zhao, T. Wen, and C. N. Markides. 2022. High temperature sensible storage—Industrial applications. In Encyclopedia of energy storage, ed. L. F. Cabeza, 424–32. Elsevier. doi:10.1016/b978-0-12-819723-3.00070-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.