9
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A solar irradiance forecasting model using iterative filtering and bidirectional long short-term memory

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 8202-8222 | Received 16 Feb 2024, Accepted 13 Jun 2024, Published online: 26 Jun 2024

References

  • Azizi, N., M. Yaghoubirad, M. Farajollahi, and A. Ahmadi. 2023. Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output. Renew Energy 206:135–47, April. doi:10.1016/J.RENENE.2023.01.102.
  • Baghel, R. S., A. K. Gosh, Y. Patidar, T. Gangakhedkar, and A. Panchal. 2023. SIF-DWTRL: Solar irradiation forecasting using discrete wavelet transform and regression learning. Energy Systems 1–17, Jun. doi:10.1007/S12667-023-00585-0/METRICS.
  • Belmahdi, B., M. Louzazni, and A. El Bouardi. 2022. Comparative optimization of global solar radiation forecasting using machine learning and time series models. Environmental Science and Pollution Research 29 (10):14871–88, February. doi:10.1007/s11356-021-16760-8.
  • Bounoua, Z., and A. Mechaqrane. 2023. Hourly and sub-hourly ahead global horizontal solar irradiation forecasting via a novel deep learning approach: A case study. Sustainable Materials and Technologies 36:e00599, Jul. doi:10.1016/J.SUSMAT.2023.E00599.
  • Demir, V., and H. Citakoglu. 2023. Forecasting of solar radiation using different machine learning approaches. Neural Computing & Applications 35 (1):887–906, January. doi:10.1007/s00521-022-07841-x.
  • Dhaked, D. K., S. Dadhich, and D. Birla. 2023. Power output forecasting of solar photovoltaic plant using LSTM. Green Energy and Intelligent Transportation 2 (5):100113, October. doi:10.1016/J.GEITS.2023.100113.
  • Díaz-Bedoya, D., M. González-Rodríguez, J. M. Clairand, X. Serrano-Guerrero, and G. Escrivá-Escrivá. 2023. Forecasting univariate solar irradiance using machine learning models: A case study of two Andean Cities. Energy Conversion and Management 296:117618, November. doi:10.1016/J.ENCONMAN.2023.117618.
  • Ekinci, E. 2024. A comparative study of LSTM-ED architectures in forecasting day-ahead solar photovoltaic energy using Weather Data. Computing 1–22, February. doi:10.1007/S00607-024-01266-1/FIGUS/11.
  • Elizabeth Michael, N., S. Hasan, A. Al-Durra, and M. Mishra. 2022. Short-term solar irradiance forecasting based on a novel Bayesian optimized deep long short-term memory neural network. Applied Energy 324:119727, October. doi:10.1016/J.APENERGY.2022.119727.
  • Eskandari, H., M. Imani, and M. Parsa Moghaddam. 2023. Best-tree wavelet packet transform bidirectional GRU for short-term load forecasting. The Journal of Supercomputing 79 (12):13545–77, August. doi:10.1007/S11227-023-05193-4.
  • Essam, Y., A. N. Ahmed, R. Ramli, K.-W. Chau, M. S. Idris Ibrahim, M. Sherif, A. Sefelnasr, and A. El-Shafie. 2022. Investigating photovoltaic solar power output forecasting using machine learning algorithms. Engineering Applications of Computational Fluid Mechanics 16 (1):2002–34, December. doi:10.1080/19942060.2022.2126528.
  • Gao, B., X. Huang, J. Shi, Y. Tai, and J. Zhang. 2020. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renew Energy 162:1665–83, December. doi:10.1016/J.RENENE.2020.09.141.
  • Goliatt, L., and Z. M. Yaseen. 2023. Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Systems with Applications 212:118295, February. doi:10.1016/J.ESWA.2022.118295.
  • Gupta, A., K. Gupta, and S. Saroha. 2020. Solar irradiation forecasting technologies: A review. Strategic Planning for Energy and the Environment 39 (3–4):319–54. doi:10.13052/SPEE1048-4236.391413.
  • Khalid, R., and N. Javaid. 2020. A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustainable Cities and Society 61:102275, October. doi:10.1016/J.SCS.2020.102275.
  • Ko, M. S., K. Lee, J. K. Kim, C. W. Hong, Z. Y. Dong, and K. Hur. 2021. Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting. IEEE Transactions on Sustainable Energy 12 (2):1321–35, April. doi:10.1109/TSTE.2020.3043884.
  • Kumari, P., and D. Toshniwal. 2021. Deep learning models for solar irradiance forecasting: A comprehensive review. Journal Cleaner Production 318:128566, October. doi:10.1016/J.JCLEPRO.2021.128566.
  • Lauret, P., R. Alonso-Suárez, J. Le Gal, and L. Salle. 2022. Solar forecasts based on the clear sky index or the clearness index: which is better? Solar 2 (4):432–44, October. doi:10.3390/SOLAR2040026.
  • Liu, J., X. Huang, Q. Li, Z. Chen, G. Liu, and Y. Tai. 2023. Hourly stepwise forecasting for solar irradiance using integrated hybrid models CNN-LSTM-MLP combined with error correction and VMD. Energy Conversion and Management 280:116804, March. doi:10.1016/J.ENCONMAN.2023.116804.
  • Liu, Q., Y. Li, H. Jiang, Y. Chen, and J. Zhang. 2024. Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks. Energy 286:129580, January. doi:10.1016/J.ENERGY.2023.129580.
  • Liu, X., Y. Liu, X. Kong, L. Ma, A. H. Besheer, and K. Y. Lee. 2023. Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis. Energy 271:126963, May. doi:10.1016/J.ENERGY.2023.126963.
  • Liu, Y., Y. Zhou, Y. Chen, D. Wang, Y. Wang, and Y. Zhu. 2020. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China. Renew Energy 146:1101–12, February. doi:10.1016/J.RENENE.2019.07.053.
  • Li, Q., D. Zhang, and K. Yan. 2023. A solar irradiance forecasting framework based on the CEE-WGAN-LSTM model. Sensors 23 (5):2799, March. doi:10.3390/S23052799.
  • Miraei Ashtiani, S. H., S. Javanmardi, M. Jahanbanifard, A. Martynenko, and F. J. Verbeek. 2021. Detection of mulberry ripeness stages using deep learning models. Institute of Electrical and Electronics Engineers Access 9:100380–94. doi:10.1109/ACCESS.2021.3096550.
  • Neeraj, P. Gupta, and A. Tomar. 2023. Multi-model approach applied to meteorological data for solar radiation forecasting using data-driven approaches. Optik (Stuttg) 286:170957, September. doi:10.1016/J.IJLEO.2023.170957.
  • Ngoc-Lan Huynh, A., R. C. Deo, M. Ali, S. Abdulla, and N. Raj. 2021. Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition. Applied Energy 298:117193, September. doi:10.1016/J.APENERGY.2021.117193.
  • Obaideen, K., M. N. AlMallahi, A. H. Alami, M. Ramadan, M. A. Abdelkareem, N. Shehata, and A. G Olabi. 2021. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. International Journal of Thermofluids 12:100123, November. doi:10.1016/J.IJFT.2021.100123.
  • Peng, T., C. Zhang, J. Zhou, and M. S. Nazir. 2021. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy 221:119887, April. doi:10.1016/J.ENERGY.2021.119887.
  • Renewables 2023 global status report. [Online]. Accessed January 9 2024. https://www.ren21.net/gsr-2023/.
  • Salman, D., C. Direkoglu, M. Kusaf, and M. Fahrioglu. 2024. Hybrid deep learning models for time series forecasting of solar power. Neural Computing & Applications 1–18, February. doi:10.1007/S00521-024-09558-5/FIGUS/12.
  • Sareen, K., B. Ketan Panigrahi, and T. Shikhola. 2023. A short-term solar irradiance forecasting modelling approach based on three decomposition algorithms and adaptive neuro-fuzzy inference system. Expert Systems with Applications 231:120770, November. doi:10.1016/J.ESWA.2023.120770.
  • Shadab, A., S. Ahmad, and S. Said. 2020. Spatial forecasting of solar radiation using ARIMA model. Remote Sens Appl 20:100427, November. doi:10.1016/J.RSASE.2020.100427.
  • Singla, P., M. Duhan, and S. Saroha. 2021. Review of different error metrics: A case of solar forecasting. AIUB Journal of Science and Engineering 20 (4). doi:10.53799/AJSE.V20I4.212.
  • Singla, P., M. Duhan, and S. Saroha. 2022. An integrated framework of robust local mean decomposition and bidirectional long short-term memory to forecast solar irradiance. International Journal of Green Energy 20 (10):1073–1085. doi:10.1080/15435075.2022.2143272.
  • Solar PV – Renewables 2020 – Analysis - IEA. Accessed January 9, 2024. [Online]. https://www.iea.org/reports/renewables-2020/solar-pv.
  • Tong, J., L. Xie, S. Fang, W. Yang, and K. Zhang. 2022. Hourly solar irradiance forecasting based on encoder–decoder model using series decomposition and dynamic error compensation. Energy Conversion and Management 270:116049, October. doi:10.1016/J.ENCONMAN.2022.116049.
  • Woldegiyorgis, T. A., N. E. Benti, M. D. Chaka, A. G. Semie, and A. A. Jemberie. 2023. Estimating solar radiation using artificial neural networks: A case study of Fiche, Oromia, Ethiopia. Cogent Engineering 10 (1). December. doi:10.1080/23311916.2023.2220489.
  • Zhang, C., N. N. A. Sjarif, and R. Ibrahim. 2024. Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020–2022. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery 14 (1):e1519, January. doi:10.1002/WIDM.1519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.