41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transforming olive-processed waste and almond shells into high-quality Biofuels: a comprehensive development and evaluation approach

, , , , &
Pages 8671-8685 | Received 28 Feb 2024, Accepted 15 Jun 2024, Published online: 01 Jul 2024

References

  • Abderrahman, M., B. Abdelaziz, and O. Abdelkader. 2022. Thermal performances and kinetics analyses of greenhouse hybrid drying of two-phase olive pomace: Effect of thin layer thickness. Renewable Energy 199:407–18. doi:10.1016/j.renene.2022.09.012.
  • Adams, P. W. R., J. E. J. Shirley, and M. C. McManus. 2015. Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction. Applied Energy 138:367–80. doi:10.1016/j.apenergy.2014.11.002.
  • Ahn, B. J., H. Chang, S. M. Lee, D. H. Choi, S. T. Cho, G. Han, and I. Yang. 2014. Effect of binders on the durability of wood pellets fabricated from Larix kaemferi C. and Liriodendron tulipifera L. sawdust. Renewable Energy 62:18–23. doi:10.1016/j.renene.2013.06.038.
  • Azargohar, R., M. Soleimani, S. Nosran, T. Bond, C. Karunakaran, A. K. Dalai, and L. G. Tabil. 2019. Thermo-physical characterization of torrefied fuel pellet from co-pelletization of canola hulls and meal. Industrial Crops and Products 128:424–35. doi:10.1016/j.indcrop.2018.11.042.
  • Basar, I. A., H. Liu, H. Carrere, E. Trably, and C. Eskicioglu. 2021. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chemistry 23 (4):1404–46. doi:10.1039/D0GC04092D.
  • Biocombustibles solides — Détermination de la résistance mécanique des granulés et des briquettes — Partie 1: Granulés ISO 17831-1:2015. n.d. ISO.
  • Biocombustibles solides — Méthode de détermination de la teneur en humidité — Méthode de séchage à l’étuve — Partie 3: Humidité de l’échantillon pour analyse générale ISO 18134-3:2015. n.d. ISO.
  • Chiang, K.-Y., K.-L. Chien, and C.-H. Lu. 2012. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy. Applied Energy 100:164–71. doi:10.1016/j.apenergy.2012.06.063.
  • Crawford, N. C., A. E. Ray, N. A. Yancey, and N. Nagle. 2015. Evaluating the pelletization of “pure” and blended lignocellulosic biomass feedstocks. Fuel Processing Technology 140:46–56. doi:10.1016/j.fuproc.2015.08.023.
  • Daskin, M., A. Erdoğan, F. Güleç, and J. A. Okolie. 2024. Generalizability of empirical correlations for predicting higher heating values of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46 (1):5434–50. doi:10.1080/15567036.2024.2332472.
  • Dyjakon, A., and T. Noszczyk. 2019. The influence of freezing temperature storage on the mechanical durability of commercial pellets from biomass. Energies 12 (13):2627. doi:10.3390/en12132627.
  • Gageanu, I., D. Cujbescu, C. Persu, and G. Voicu. 2018. Impact of using additives on quality of agricultural biomass pellets, vol. 17, 1632–38. Presented at the Engineering for Rural Development. doi:10.22616/ERDev2018.17.N016.
  • García-Maraver, A., V. Popov, and M. Zamorano. 2011. A review of European standards for pellet quality. Renewable Energy 36 (12):3537–40. doi:10.1016/j.renene.2011.05.013.
  • Gilvari, H., W. De Jong, and D. L. Schott. 2020. The effect of biomass pellet length, test conditions and torrefaction on mechanical durability characteristics according to ISO Standard 17831-1. Energies 13 (11):3000. doi:10.3390/en13113000.
  • Gong, C., X. Meng, L. G. Thygesen, K. Sheng, Y. Pu, L. Wang, A. Ragauskas, X. Zhang, and S. T. Thomsen. 2023. The significance of biomass densification in biological-based biorefineries: A critical review. Renewable and Sustainable Energy Reviews 183:113520. doi:10.1016/j.rser.2023.113520.
  • Hossain, T., D. S. Jones, E. Godfrey, D. Saloni, M. Sharara, and D. S. Hartley. 2024. Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass. Renewable Energy 227:120494. doi:10.1016/j.renene.2024.120494.
  • Ingrao, C., R. Selvaggi, F. Valenti, A. Matarazzo, B. Pecorino, and C. Arcidiacono. 2019. Life cycle assessment of expanded clay granulate production using different fuels. Resources, Conservation and Recycling 141:398–409. doi:10.1016/j.resconrec.2018.10.026.
  • Jackson, J., A. Turner, T. Mark, and M. Montross. 2016. Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Processing Technology 148:43–49. doi:10.1016/j.fuproc.2016.02.024.
  • Jägers, J., P. Spatz, S. Wirtz, and V. Scherer. 2021. Analysis of wood pellet degradation characteristics based on single particle impact tests. Powder Technology 378:704–15. doi:10.1016/j.powtec.2020.10.017.
  • Jasinskas, A., V. Kleiza, D. Streikus, R. Domeika, E. Vaiciukevičius, G. Gramauskas, and M. T. Valentin. 2022. Assessment of quality indicators of pressed biofuel produced from coarse herbaceous plants and determination of the influence of moisture on the properties of pellets. Sustainability (Switzerland) 14 (3):1068. doi:10.3390/su14031068.
  • Kambo, H. S., and A. Dutta. 2014. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy 135:182–91. doi:10.1016/j.apenergy.2014.08.094.
  • Karkania, V., E. Fanara, and A. Zabaniotou. 2012. Review of sustainable biomass pellets production – a study for agricultural residues pellets’ market in Greece. Renewable and Sustainable Energy Reviews 16 (3):1426–36. doi:10.1016/j.rser.2011.11.028.
  • Kaur, R., P. Gera, M. K. Jha, and T. Bhaskar. 2018. Pyrolysis kinetics and thermodynamic parameters of castor (ricinus communis) residue using thermogravimetric analysis. Bioresource Technology 250:422–28. doi:10.1016/j.biortech.2017.11.077.
  • Khan, M. A. H., S. Bonifacio, J. Clowes, A. Foulds, R. Holland, J. C. Matthews, C. J. Percival, and D. E. Shallcross. 2021. Investigation of biofuel as a potential renewable energy source. Atmosphere 12 (10):1289. doi:10.3390/atmos12101289.
  • Lajili, M., L. Limousy, and M. Jeguirim. 2014. Physico-chemical properties and thermal degradation characteristics of agropellets from olive mill by-products/sawdust blends. Fuel Processing Technology 126:215–21. doi:10.1016/j.fuproc.2014.05.007.
  • Liu, M., Z. Zhu, Z. Zhang, Y. Chu, B. Yuan, and Z. Wei. 2020. Development of highly porous mullite whisker ceramic membranes for oil-in-water separation and resource utilization of coal gangue. Separation and Purification Technology 237:116483. doi:10.1016/j.seppur.2019.116483.
  • Luo, J., Q. Li, A. Meng, Y. Long, and Y. Zhang. 2018. Combustion characteristics of typical model components in solid waste on a macro-TGA. Journal of Thermal Analysis and Calorimetry 132 (1):553–62. doi:10.1007/s10973-017-6909-9.
  • Makovskis, K., D. Lazdina, A. Arsanica, and V. Solodovniks. 2016. Mechanical durability and water absorption of pellets made from different tree species - A case study. Agronomy Research 14:134–142.
  • Mami, M., H. Mätzing, H.-J. Gehrmann, D. Stapf, R. Bolduan, and M. Lajili. 2018a. Investigation of the olive mill solid wastes pellets combustion in a counter-current fixed bed reactor. Energies 11 (8):1965. doi:10.3390/en11081965.
  • Mami, M., H. Mätzing, H.-J. Gehrmann, D. Stapf, R. Bolduan, and M. Lajili. 2018b. Investigation of the olive mill solid wastes pellets combustion in a counter-current fixed bed reactor. Energies 11 (8):1965. doi:10.3390/en11081965.
  • Mellalou, A., W. Riad, A. Mouaky, A. Bacaoui, and A. Outzourhit. 2021. Optimum design and orientation of a greenhouse for seasonal winter drying in Morocco under constant volume constraint. Solar Energy 230:321–32. doi:10.1016/j.solener.2021.10.050.
  • Miranda, T., J. I. Arranz, I. Montero, S. Román, C. V. Rojas, and S. Nogales. 2012. Characterization and combustion of olive pomace and forest residue pellets. Fuel Processing Technology 103:91–96. doi:10.1016/j.fuproc.2011.10.016.
  • Miranda, T., A. Esteban, S. Rojas, I. Montero, and A. Ruiz. 2008. Combustion analysis of different olive residues. International Journal of Molecular Sciences 9 (4):512–25. doi:10.3390/ijms9040512.
  • Mock, C., H. Lee, S.-C. Choi, W. Yang, S. Choi, and V. Manovic. 2018. Combustion behavior of single pellets of coal–wood mixtures in a hot gas flow field. Energy & Fuels 32 (11):11913–23. doi:10.1021/acs.energyfuels.8b02557.
  • Nath, B., G. Chen, L. Bowtell, and E. Graham. 2024. An investigation of thermal decomposition behavior and combustion parameter of pellets from wheat straw and additive blends by thermogravimetric analysis. International Journal of Thermofluids 22:100660. doi:10.1016/j.ijft.2024.100660.
  • Ozturk, I. 2016. Utilizing biofuels for sustainable development in the panel of 17 developed and developing countries. GCB Bioenergy 8 (4):826–36. doi:10.1111/gcbb.12287.
  • Romero, E., M. Quirantes, and R. Nogales. 2017. Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208:1–9. doi:10.1016/j.fuel.2017.06.133.
  • Samuelsson, R., M. Thyrel, M. Sjöström, and T. A. Lestander. 2009. Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality. Fuel Processing Technology 90 (9):1129–34. doi:10.1016/j.fuproc.2009.05.007.
  • Sarker, T. R., R. Azargohar, J. Stobbs, C. Karunakaran, V. Meda, and A. K. Dalai. 2022. Complementary effects of torrefaction and pelletization for the production of fuel pellets from agricultural residues: A comparative study. Industrial Crops and Products 181:114740. doi:10.1016/j.indcrop.2022.114740.
  • Sarker, T. R., S. Nanda, A. K. Dalai, and V. Meda. 2021. A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. BioEnergy Research 14 (2):645–69. doi:10.1007/s12155-020-10236-2.
  • Siyal, A. A., Y. Liu, X. Mao, B. Ali, S. Husaain, J. Dai, T. Zhang, J. Fu, and G. Liu. 2021. Characterization and quality analysis of wood pellets: Effect of pelletization and torrefaction process variables on quality of pellets. Biomass Conversion and Biorefinery 11 (5):2201–17. doi:10.1007/s13399-020-01235-6.
  • Stolarski, M. J., P. Stachowicz, and P. Dudziec. 2022. Wood pellet quality depending on dendromass species. Renewable Energy 199:498–508. doi:10.1016/j.renene.2022.08.015.
  • Tahiri, A., L. Messaoudi, N. Tijani, M. H. Zerrouk, and M. Messaoudi. 2021. Manufacture and characterization of flat membrane supports based on Moroccan Rif clay. Materials Today: Proceedings 43:209–15. doi:10.1016/j.matpr.2020.11.638.
  • Theerarattananoon, K., F. Xu, J. Wilson, R. Ballard, L. Mckinney, S. Staggenborg, P. Vadlani, Z. J. Pei, and D. Wang. 2011. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products 33 (2):325–32. doi:10.1016/j.indcrop.2010.11.014.
  • Tumuluru, J. S. 2018. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resources Conversion 1 (1):44–54. doi:10.1016/j.crcon.2018.06.002.
  • Tumuluru, J. S., C. T. Wright, J. R. Hess, and K. L. Kenney. 2011. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining 5 (6):683–707. doi:10.1002/bbb.324.
  • Vega, L. Y., L. López, C. F. Valdés, and F. Chejne. 2019. Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Management (New York, NY) 87:108–18. doi:10.1016/j.wasman.2019.01.048.
  • Yeo, J. Y., B. L. F. Chin, J. K. Tan, and Y. S. Loh. 2019. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. Journal of the Energy Institute 92 (1):27–37. doi:10.1016/j.joei.2017.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.