6,264
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Economic analysis of hydrogen production from steam reforming process: A literature review

, &

References

  • Adamson, K. A., and P. Pearson. 2000. Hydrogen and methane: A comparison of safety, economics, efficiencies and emissions. Journal Power Sour 86:548–55. doi:10.1016/S0378-7753(99)00404-8.
  • Adhikari, S., S. D. Fernando, and A. Haryanto. 2008. Hydrogen production from glycerin by steam reforming over nickel catalysts. Renew Energy 33:1097–100. doi:10.1016/j.renene.2007.09.005.
  • Alberton, A. L., M. M. V. M. Souza, and M. Schmal. 2007. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today 123:257–64. doi:10.1016/j.cattod.2007.01.062.
  • Alhamdani, Y. A., M. H. Hassim, R. T. L. Ng, and M. Hurme. 2017. The estimation of fugitive gas emissions from hydrogen production by natural gas steam reforming. International Journal of Hydrogen Energy 42:9342–51. doi:10.1016/j.ijhydene.2016.07.274.
  • Bartels, J. R., M. B. Pate, and N. K. Olson. 2010. An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy 35:8371–84. doi:10.1016/j.ijhydene.2010.04.035.
  • Boyano, A., T. Morosuk, A. M. Blanco-Marigorta, and G. Tsatsaronis. 2012. Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production. Journal Cleaner Products 20:152–60. doi:10.1016/j.jclepro.2011.07.027.
  • Braga, L. B., J. L. Silveira, M. E. Da Silva, C. E. Tuna, E. B. Machin, and D. T. Pedroso. 2013. Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renew Sust Energy Reviews 28:166–73. doi:10.1016/j.rser.2013.07.060.
  • Bshish, A., Z. Yaakob, B. Narayanan, R. Ramakrishnan, and A. Ebshish. 2011. Steam-reforming of ethanol for hydrogen production. Chemical Papers 65:251–66. doi:10.2478/s11696-010-0100-0.
  • Choudhary, T. V., C. Sivadinarayana, C. C. Chusuei, A. Klinghoffer, and D. W. Goodman. 2001. Hydrogen production via catalytic decomposition of methane. J Catal 199:9–18. doi:10.1006/jcat.2000.3142.
  • Coll, R., J. Salvado, X. Farriol, and D. Montane. 2001. Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation. Fuel Processing Technological 74:19–31. doi:10.1016/S0378-3820(01)00214-4.
  • Compagnoni, M., A. Tripodi, and I. Rossetti. 2017. Parametric study and kinetic testing for ethanol steam reforming. Applications Catal B: Environment 203:899–909. doi:10.1016/j.apcatb.2016.11.002.
  • Constantinou, D. A., and A. M. Efstathiou. 2010. Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts. Applications Catal B: Environment 96:276–89. doi:10.1016/j.apcatb.2010.02.007.
  • Cortright, R. D., R. R. Davda, and J. A. Dumesic. 2002. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–66. doi:10.1038/nature01009.
  • Dehkordi, T. K., F. Hormozi, and M. Jahangiri. 2016. Using conical reactor to improve efficiency of ethanol steam reforming. International Journal of Hydrogen Energy 41:17084–17082. doi:10.1016/j.ijhydene.2016.07.040.
  • Di Giuliano, A., J. Girr, R. Massacesi, K. Gallucci, and C. Courson. 2017. Sorption enhanced steam methane reforming by Ni-CaO materials supported on mayenite. International Journal of Hydrogen Energy 42:13661–80. doi:10.1016/j.ijhydene.2016.11.198.
  • Diglio, G., D. P. Hanak, P. Bareschino, E. Mancusi, F. Pepe, F. Montagnaro, and V. Monovic. 2017. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell. Journal Power Sour 364:41–51. doi:10.1016/j.jpowsour.2017.08.005.
  • Dung, L. D., K. Morishita, and T. Takarada. 2013. Catalytic decomposition of biomass tars at low-temperature. Intech capter11:301–03. doi:10.5772/55356.
  • Farshchi Tabrizi, F., S. A. H. Seyed Mousavi, and H. Atashi. 2015. Thermodynamic analysis of steam reforming of methane with statistical approaches. Energy Convers Manage 103:1065–77. doi:10.1016/j.enconman.2015.07.005.
  • Furusawa, T., and A. Tsutsumi. 2005. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Applications Catal A: General 278:207–12. doi:10.1016/j.apcata.2004.09.035.
  • Gangadharan, P., K. C. Kanchi, and H. H. Lou. 2012. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Researcher Design 90:1956–68. doi:10.1016/j.cherd.2012.04.008.
  • Hernandez, B., and M. Martin. 2016. Optimal process operation for biogas reforming to methanol: Effects of dry reforming and bio-gas composition. Industrial & Engineering Chemistry Research 55:6677–85. doi:10.1021/acs.iecr.6b01044.
  • Hou, K., and R. Hughes. 2001. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal (Lausanne, Switzerland : 1996) 82:311–28. doi:10.1016/S1385-8947(00)00367-3.
  • Iida, H., N. Onuki, T. Numa, and A. Igarashi. 2016. Steam reforming of dodecane and toluene over Ru/12SrO–7Al2O3(S12A7) catalysts. Fuel Processing Technological 142:397–402. doi:10.1016/j.fuproc.2015.09.026.
  • Imran Amran, U., A. Ahmad, and M. R. Othman. 2017. Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using Aspen Plus. Chemical Engineering Transactions 56:1681–86.
  • Jeong, S., S. Kim, B. Lee, S. K. Ryi, and H. Lim. 2017. Techno-economic analysis: Ethane steam reforming in a membrane reactor with H2 selectivity effect and profitability analysis. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2017.07.202.
  • Laosiripojana, N., and S. Assabumrungrat. 2007. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. Journal Power Sour 163:943–51. doi:10.1016/j.jpowsour.2006.10.006.
  • Lee, H., K. S. Cha, H. S. Kim, C. S. Park, and Y. H. Kim. 2014. Syngas and hydrogen production via stepwise methane reforming over Cu-ferrite/YSZ. International Journal Energy Researcher 38:1522–30. doi:10.1002/er.3159.
  • Martavalzi, C., E. P. Pampaka, E. S. Korkakaki, and A. A. Lemonidou. 2010. Hydrogen production via steam reforming of methane with simultaneous CO2 capture over CaO-Ca12Al14O33. Energy & Fuels : an American Chemical Society Journal 24:2589–95. doi:10.1021/ef9014058.
  • Mirabal, S. T. 2003. An economic analysis of hydrogen production technologies using renewable energy resources. Master of Science Thesis, University of Florida.
  • Mondal, K. C., and R. Chandran. 2014. Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process. International Journal of Hydrogen Energy 39:9670–74. doi:10.1016/j.ijhydene.2014.04.087.
  • Muraza, O., and A. Galadima. 2015. A review on coke management during dry reforming of methane. International Journal Energy Researcher 39:1196–216. doi:10.1002/er.v39.9.
  • Nishikawa, J., T. Miyazawa, K. Nakamura, M. Asadullah, K. Kunimori, and K. Tomishige. 2008. Promoting effect of Pt addition to Ni/CeO2/Al2O3 catalyst for steam gasification of biomass. Catal Today 9:195–201.
  • Ozcan, H., and I. Dincer. 2015. Thermodynamic and environmental impact assessment of steam methane reforming and magnesium-chlorine cycle-based multigeneration systems. International Journal Energy Researcher 39:178–1789.
  • Sabio, E., A. Alvarez-Murillo, J. F. Gonzalez, B. Ledesma, and S. Roman. 2017. Modeling the composition of the gas obtained by steam reforming of glycerine. International Journal of Hydrogen Energy 146:147–57.
  • Silveira, E. B., R. C. Rabelo-Neto, and F. B. Noronha. 2017. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts. Catal Today 289:289–301. doi:10.1016/j.cattod.2016.08.024.
  • Silveira, J. L., L. B. Braga, A. C. C. Souza, J. S. Antunes, and R. Zanzi. 2009. The benefits of ethanol use for hydrogen production in urban transportation. Renew Sustain Energy Reviews 13:2525–34. doi:10.1016/j.rser.2009.06.032.
  • Song, H., and U. S. Ozkan. 2010. Economic analysis of hydrogen production through a bio-ethanol steam reforming process: sensitivity analyses and cost estimations. International Journal of Hydrogen Energy 35:127–34. doi:10.1016/j.ijhydene.2009.10.043.
  • Świerczyński, D., S. Libs, C. Courson, and A. Kiennemann. 2007. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applications Catal B: Environment 74:211–22. doi:10.1016/j.apcatb.2007.01.017.
  • Ting, L. H., L. H. Man, N. W. Yee, J. Yihan, and L. A. M. K. Fung. 2012. Techno-economic analysis of distributed hydrogen production from natural gas. Chinese Journal Chemical Engineering 20:489–96. doi:10.1016/S1004-9541(11)60210-3.
  • Xu, J., C. M. Y. Yeung, J. Ni, F. Meunier, N. Acerbi, M. Fowles, and S. C. Tsang. 2008. Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts. Applications Catal A: General 345:119–27. doi:10.1016/j.apcata.2008.02.044.
  • Yadav, A. K., and P. D. Vaidya. 2017. Kinetic investigation on butanol steam reforming over Ru/Al2O3 catalyst. In Journal Hydrogen Energy 42:25203–12. doi:10.1016/j.ijhydene.2017.08.021.
  • Yang, X. 2017. An experimental investigation on the deactivation and regeneration of a steam reforming catalyst. Renew Energy 112:17–24. doi:10.1016/j.renene.2017.05.018.
  • Zamzuri, N. H., R. Mat, N. A. Saidina Amin, and A. Talebian-Kiakalaieh. 2017. Hydrogen production from catalytic steam reforming of glycerol over various supported nickel catalysts. International Journal of Hydrogen Energy 42:9087–98. doi:10.1016/j.ijhydene.2016.05.084.
  • Zhang, T., and M. D. Amiridis. 1998. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Applications Catal A: General 167:161–72. doi:10.1016/S0926-860X(97)00143-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.