239
Views
6
CrossRef citations to date
0
Altmetric
Miscellany

Potential of power-to-heat from excess wind energy on the city level

References

  • Bareiß, K. 2015. Klimaschutzteilkonzept – Kapitel Wärme, Chair of Renewable and Sustainable Energy Systems. TUM, report. Accessed March 06, 2019. https://www.greifswald.de/de/wirtschaft-bauen-verkehr/umwelt-und-klimaschutz/klimaschutz/index.html.
  • Bareiß, K. 2019. Power-to-Heat for decarbonizing municipal district heating with high shares of wind energy. 7th European Conference on Renewable Energy Systems, Madrid, Spain, June 10–12.
  • Blauhut, S. 2015. Solar potential analysis and development of a power cadaster based on geospatial building data. Masterthesis, TUM-ENS (unpublished).
  • Bloess, A., W.-P. Schill, and A. Zerrahn. 2018. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Applied Energy 212:1611–26. doi:10.1016/j.apenergy.2017.12.073.
  • Botzenhart, F., and T. Hamacher. 2013. A roadmap for the future energy infrastructure in Salzburg. FfE-Schriftenreihe, Vol. 31. Forschungsstelle für Energiewirtschaft e.V., Munich, Germany.
  • Bundesministerium. für Wirtschaft und Energie (BMWi). 2014. Gesetz für den Ausbau Erneuerbare Energien (Erneuerbare-Energien-Gesetz-EEG 2014) [Law for the expansion of renewable energy], Berlin, Germany.
  • Bundesnetzagentur. 2017. Entwicklung der Ausfallarbeit durch Abregelung der EE-Stromeinspeisung in Deutschland in den Jahren 2009 bis 2015. [Development of the excess energy by curtailing renewable energy Germany in the years 2009 to 2015]. Accessed April 06, 2019. https://de.statista.com/statistik/daten/studie/617949/umfrage/einspeisemanagement-in-deutschland.
  • Ciapała, B., J. Jurasz, and A. Kies. 2019. The Potential of Wind Power-Supported Geothermal District Heating Systems - Model Results for a Location in Warsaw (Poland). Energies 12 (19):3706. doi:10.3390/en12193706.
  • Demirbas, A., and A. Urkmez. 2006. Biomass-Based Combined Heat and Power Systems. Energy Sources, Part B: Economics, Planning, and Policy 1 (3):245–53. doi:10.1080/009083190881616.
  • Dorfner, J. 2016. Open source modelling and optimisation of energy infrastructure at urban scale. Diss., TUM.
  • Dorfner, J., M. Dorfner, K. Schönleber, and S. Candas 2017. urbs: A linear optimisation model for distributed energy systems. TUM-ENS. Accessed March 03, 2019. https://github.com/tum-ens/urbs.
  • Energietechnische Gesellschaft (ETG). 2012. Erneuerbare Energie braucht flexible Kraftwerke – Szenarien bis 2020 [Renewable energy need flexible power-plants - scenarios until 2020]. Tech. Rep., VDE, Frankfurt on the Main, Germany
  • Eurostat. 2017. Electricity generated from renewable sources (tsdcc330). Accessed June 14, 2018. https://data.europa.eu/euodp/en/data/dataset/A7j5oeSULbNO6TIYaBjEaA.
  • Fraunhofer ISE. 2014. Stromgestehungskosten Erneuerbare Energien 2013 [Electricity production costs of renewable energies 2013]. Accessed July 26, 2019. https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html.
  • Fuchs, K., and L. Schmees. 2015. Maximale Energieeffizenz im Bestand– Zeigen, was möglich ist. [Maximum efficiency in stock- showing possibilities]. Die Wohnungswirtschaft, Tech. Rep.10. https://tinyurl.com/y9s5tbsy.
  • Gönen, T. 2014. Electrical Power Transmission System Engineering: Analysis and Design. 3rd ed. CRC Press, Boca Raton, USA.
  • Gravelsins, A., I. Pakere, A. Tukulis, and D. Blumberga. 2019. Solar power in district heating. P2H flexibility concept. Energy 181:1023–35. doi:10.1016/j.energy.2019.05.224.
  • Härtel, P., and F. Sandau 2017. Aggregated modelling approach of power and heat sector coupling technologies in power system models. 14th International Conference on the European Energy Market (EEM), Dresden, Germany.
  • Hast, A., S. Rinne, S. Syri, and J. Kiviluoma. 2017. The role of heat storages in facilitating the adaptation of district heating systems to large amount of variable renewable electricity. Energy 137:775–88. doi:10.1016/j.energy.2017.05.113.
  • Heilek, C. 2015. Model-based Optimisation of Installation and Dispatching of Generation Units and Storages for Electrical and Thermal Energy in the German Energy System. Diss., TUM
  • Hepbasli, A. 2003. Modeling of Sectoral Energy and Exergy Utilization. Energy Sources. doi:10.1080/00908310490448992.
  • Holst, A., and P. Kertscher. Netzintegration der Erneuerbaren Energien um Land Mecklenburg-Vorpommern (Netzstudie MV- 2012) [Integration of renewable energies in the grid from the state Mecklenburg-Vorpommern (Grid-study MV-2012)]. University Rostock. Accessed May 14, 2019. https://www.regierung-mv.de/serviceassistent/download?id=90359.
  • Homann, A. M. J. 2014. Monitoringbericht. Bundesnetzagentur für Elektrizität, Gas, Bundeskartellamt Telekommunikation, Post und Eisenbahnen, Budeskartellamt, Bonn, Germany
  • Huber, M., D. Dimkova, and T. Hamacher. 2014. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 69:236–46. doi:10.1016/j.energy.2014.02.109.
  • Hunger, D. 2010. Integriertes Klimaschutzkonzept der Universitäts- und Hansestadt Greifswald [Integrated climate protection concept of the university and hansa-town Greifswald]. Accessed May 11, 2018. https://www.greifswald.de/de/.galleries/dokumente/Staedtische-Konzepte/Klimaschutzkonzept/Integriertes_Klimaschutzkonzept__Langfassung.pdf.
  • Janker, K. A. 2015. Creation and evaluation of a database of renewable production time series and other data for energy system modelling. Technische Universität München, Munich, Germany.
  • Kirkerud, J. G., T. F. Bolkesjø, and E. Trømborg. 2017. Power-to-heat as a flexibility measure for integration of renewable energy. Energy 128:776–84. doi:10.1016/j.energy.2017.03.153.
  • Lund, H., B. Möller, B. V. Mathiesen, and A. Dyrelund. 2010. The role of district heating in future renewable energy systems. Energy 35 (3):1381–90. doi:10.1016/j.energy.2009.11.023.
  • Mauch, W., R. Corradini, K. Wiesemeyer, and M. Schwentzek. 2010. Allokationsmethoden für spezifische CO2-Emissionen von Strom und Wärme aus KWK-Anlagen [Allocation methods for specific CO2 emissions of electricity and heat from CHP plants]. Energiewirtschaftliche Tagesfragen 60 (9): 12-14.
  • Quaschning, V. 2015. Regenerative Energiesysteme. 9th ed. Hanser. ISBN978-3-446-44267-2, Munich, Germany.
  • Rinne, S., and S. Syri. 2014. The possibilities of combined heat and power production balancing large amounts of wind power in Finland. Energy. doi:10.1016/j.energy.2015.02.002.
  • Rohrig, K. 2014. Energiewirtschaftliche bedeutung der onshore-windenergie für die energiewende [energy-economic significance of onshore wind energy for the energy transition]. . Germany: Tech. Rep. Fraunhofer-IWES, Kassel.
  • Schaber, K., F. Steinke, and T. Hamacher 2013. Managing temporary oversupply from renewables efficiently: Electricity storage versus energy sector coupling in Germany. International Energy Workshop, Paris
  • Skytte, K., C. Bergaentzlé, and E. R. Soysal. 2017. Design of grid tariffs in electricity systems with variable renewable energy and power to heat. 14th International Conference on the European Energy Market (EEM), Dresden
  • Steinke, F., P. Wolfrum, and C. Hoffmann. 2013. Grid vs. storage in a 100% renewable Europe. Renewable Energy 50:826–32. doi:10.1016/j.renene.2012.07.044.
  • TransnetBW, TenneT, 50Hertz, and Amprion. 2014. Oshore Netzentwicklungplan 2024, Erster Entwurf der Übertragungsnetzbetreiber, Szenario B2024, (O-NEP) [Oshore Grid Development Plan 2024, First draft TSO Scenario B2024, (O-NEP)]. Tech. Rep. Accessed June 14, 2019. https://www.netzentwicklungsplan.de/de/netzentwicklungsplaene/netzentwicklungsplaene-2024.
  • TUM. 2011. Leitfaden Energienutzungsplan Bayern [Guide for energy usage in Bavaria]. StMUG, Munich, Germany.
  • UHG. 2017. Masterplan 100% Klimaschutz Universitäts- und Hansestadt Greifswald, 2017 [Masterplan 100 % climate protection for the University and hansa-town Greifswald]. Accessed May 25, 2018. https://www.klimaschutz.de/projekte/hansestadt-greifswald-%E2%80%93-masterplan-100-klimaschutz.
  • VDEW. 2002. Repräsentative elektrische Lastprofile: Haushalte allgemein (H0) und Gewerbe allgemein (G0) Zeitreihen [Representative electrical load profiles: general households (H0) and general commercial (G0) time series], Verband der Elektrizitätswirtschaft e. V., Frankfurt at the Main, Germany.
  • VDEW. 2014. Reference load profile. Stadtwerke Una. Accessed July 26, 2019. http://tinyurl.com/vdew-lastprofile.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.