329
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Perspectives and economics of combining biomass liquefaction with solar PV for energy storage and electricity production

ORCID Icon

References

  • Ahmad, E., N. Jäger, A. Apfelbacher, R. Daschner, A. Hornung, and K. K. Pant. 2018. Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Processing Technology 171:277–86. doi:10.1016/j.fuproc.2017.11.020.
  • Akhtar, J., and N. S. Amin. 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews 16 (7):5101–09. doi:10.1016/j.rser.2012.05.033.
  • Australian Government. 2019. Renewable energy target scheme [WWW Document]. Renew. Energy Target RET Scheme. Canberra, Australia. Accessed February 11, 2019. http://www.environment.gov.au/climate-change/government/renewable-energy-target-scheme.
  • Balagurumurthy, B., and T. Bhaskar. 2014. Hydropyrolysis of lignocellulosic biomass: State of the art review. Biomass Conversion and Biorefinery 4 (1):67–75. doi:10.1007/s13399-013-0086-2.
  • BNEF. 2018. Energy storage 620 billion invest. Oppor. 2040. accessed January 23, 2019. https://about.bnef.com/blog/energy-storage-620-billion-investment-opportunity-2040/.
  • BP. 2016. BP statistical review of world energy June 2016. London, UK: BP p.l.c..
  • Bridgwater, A. V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38:68–94. doi:10.1016/j.biombioe.2011.01.048.
  • Carrasco, J. L., S. Gunukula, A. A. Boateng, C. A. Mullen, W. J. DeSisto, and M. C. Wheeler. 2017. Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production. Fuel 193:477–84. doi:10.1016/j.fuel.2016.12.063.
  • Dahmen, N., J. Abeln, M. Eberhard, T. Kolb, H. Leibold, J. Sauer, D. Stapf, and B. Zimmerlin. 2017. The bioliq process for producing synthetic transportation fuels. Wiley Interdisciplinary Reviews: Energy and Environment 6 (3):e236. doi:10.1002/wene.236.
  • Dahmen, N., E. Dinjus, T. Kolb, U. Arnold, H. Leibold, and R. Stahl. 2012. State of the art of the bioliq process for synthetic biofuels production. Environmental Progress & Sustainable Energy 31 (2):176–81. doi:10.1002/ep.10624.
  • Dai, J., H. Cui, and J. R. Grace. 2012. Biomass feeding for thermochemical reactors. Progress in Energy and Combustion Science 38 (5):716–36. doi:10.1016/j.pecs.2012.04.002.
  • Demirbas, A., and G. Arin. 2002. An overview of biomass pyrolysis. Energy Sources 24 (5):471–82. doi:10.1080/00908310252889979.
  • Ensyn. 2016. Advancing the bioeconomy initiative, in: Bioenergy 2016. Washington, D.C., USA: US Department of Energy.
  • Envergent. 2010. The production of electricity from wood and other solid biomass. Des Plaines, IL, USA: Envergent Technologies Inc.
  • Fernandez-Akarregi, A. R., J. Makibar, G. Lopez, M. Amutio, and M. Olazar. 2013. Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Processing Technology 112:48–56. doi:10.1016/j.fuproc.2013.02.022.
  • Finkel, A., C. Munro, and M. O’Kane. 2017. Independent review into the future security of the national electricity market - blueprint for the future. Canberra, Australia: Commonwealth of Australia.
  • Gollakota, A. R. K., N. Kishore, and S. Gu. 2017. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. doi:10.1016/j.rser.2017.05.178.
  • Hart Energy. 2014. Empyro builds BTL plant; py-oil substitutes for natural gas. Glob. Refin. Fuels Today.
  • Iisa, K., R. J. French, K. A. Orton, A. Dutta, and J. A. Schaidle. 2017. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating. Fuel 207:413–22. doi:10.1016/j.fuel.2017.06.098.
  • Iisa, K., D. J. Robichaud, M. J. Watson, J. Ten Dam, A. Dutta, C. Mukarakate, S. Kim, M. R. Nimlos, and R. M. Baldwin. 2018. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading. Green Chemistry 20 (3):567–82. doi:10.1039/C7GC02947K.
  • International Energy Agency. 2017. Key world energy statistics. International Energy Agency, Paris, France.
  • Jensen, C. U., J. K. R. Guerrero, S. Karatzos, G. Olofsson, and S. B. Iversen. 2018. HydrofactionTM of forestry residues to drop-in renewable transportation fuels. In Direct thermochemical liquefaction for energy applications, Edited by Lasse Rosendahl, 319–45. Elsevier, The Netherlands. doi:10.1016/B978-0-08-101029-7.00009-6.
  • Jin, C.-L., Z.-M. Wu, S.-W. Wang, Z.-Q. Cai, T. Chen, M. R. Farahani, and D.-X. Li. 2017. Economic assessment of biomass gasification and pyrolysis: A review. Energy Sources, Part B: Economics, Planning, and Policy 12 (11):1030–35. doi:10.1080/15567249.2017.1358309.
  • Jones, S., P. Meyer, L. Snowden-Swan, A. Padmaperuma, E. Tan, A. Dutta, J. Jacobson, and K. Cafferty. 2013. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels – fast pyrolysis and hydrotreating bio-oil pathway (No. PNNL-23053). Richland, Washington, USA: Pacific Northwest National Laboratory.
  • Jones, S. B., J. E. Holladay, C. Valkenburg, D. J. Stevens, C. W. Walton, C. Kinchin, D. C. Elliot, and S. Czernik. 2009. Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocacking: A design case (No. PNNL-18284). Richland, Washington, USA: Pacific Northwest National Laboratory.
  • Lan, H., Z. Gou, and B. Cheng. 2020. Regional difference of residential solar panel diffusion in Queensland, Australia. Energy sources Part B. Economics Plan Policy 1–13. doi:10.1080/15567249.2020.1736214.
  • Lane, J., 2016. Licella, Canfor form JV for low-cost, drop-in biofuels from wood residues and biomass [WWW Document]. Biofuels Dig. Accessed January 22, 2019. http://www.biofuelsdigest.com/bdigest/2016/05/29/licella-canfor-form-jv-for-low-cost-drop-in-biofuels-from-wood-residues-and-biomass/.
  • Lange, J.-P. 2018. Lignocellulose Liquefaction to Biocrude: A Tutorial Review. ChemSusChem 11 (6):997–1014. doi:10.1002/cssc.201702362.
  • Lazard. 2018. Lazard’s levelized cost of storage - version 4.0.  New York, NY: Lazard.
  • Lehto, J., A. Oasmaa, Y. Solantausta, M. Kyto, and D. Chiaramonti. 2013. Fuel oil quality and combustion of fast pyrolysis bio-oils (No. VTT T87). Espoo, Finland: VTT.
  • Linck, M., L. Felix, T. Marker, and M. Roberts. 2014. Integrated biomass hydropyrolysis and hydrotreating: A brief review. Wiley Interdisciplinary Reviews: Energy and Environment 3 (6):575–81. doi:10.1002/wene.119.
  • Mante, O. D., and F. A. Agblevor. 2014. Catalytic pyrolysis for the production of refinery-ready biocrude oils from six different biomass sources. Green Chemistry 16 (6):3364–77. doi:10.1039/c4gc00555d.
  • Mante, O. D., D. C. Dayton, J. R. Carpenter, K. Wang, and J. E. Peters. 2018. Pilot-scale catalytic fast pyrolysis of loblolly pine over γ-Al 2 O 3 catalyst. Fuel 214:569–79. doi:10.1016/j.fuel.2017.11.073.
  • Marker, T., L. Felix, M. Linck, and M. Roberts. 2010. Direct production of gasoline and diesel from biomass using integrated hydropyrolysis and hydroconversion (IH2). Presentation for IEA Bioenergy - Task 42, Biorefining. Gas Technology Institute.
  • Marker, T. L., L. G. Felix, M. B. Linck, and M. J. Roberts. 2012. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 1: Proof of principle testing. Environmental Progress & Sustainable Energy 31 (2):191–99. doi:10.1002/ep.10629.
  • Marker, T. L., L. G. Felix, M. B. Linck, M. J. Roberts, P. Ortiz-Toral, and J. Wangerow. 2014. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 2: Continuous testing. Environmental Progress & Sustainable Energy 33 (3):762–68. doi:10.1002/ep.11906.
  • Meier, D., B. V. D. Beld, A. V. Bridgwater, D. C. Elliott, A. Oasmaa, and F. Preto. 2013. State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews 20:619–41. doi:10.1016/j.rser.2012.11.061.
  • Muggen, G., 2015. Looking back at the first half year of commercial scale pyrolysis oil production at Empyro, in: TcBIOMASS 2015, 4th International Conference on Thermochemical Conversion Science. Department of Energy, Chicago, IL, USA.
  • Oasmaa, A., B. V. D. Beld, P. Saari, D. C. Elliott, and Y. Solantausta. 2015. Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy & Fuels 29 (4):2471–84. doi:10.1021/acs.energyfuels.5b00026.
  • Oasmaa, A., Y. Solantausta, V. Arpiainen, E. Kuoppala, and K. Sipila. 2010. Fast pyrolysis bio-oils from wood and agricultural residues. Energy & Fuels 24 (2):1380–88. doi:10.1021/ef901107f.
  • Perkins, G. 2018a. Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass. Energy Conversion and Management 171:1573–88. doi:10.1016/j.enconman.2018.06.090.
  • Perkins, G. 2018b. Integration of biocrude production from fast pyrolysis of biomass with solar PV for dispatchable electricity production. Clean Energy 2:85–101. doi:10.1093/ce/zky013.
  • Perkins, G., N. Batalha, A. Kumar, T. Bhaskar, and M. Konarova. 2019. Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews 115:109400. doi:10.1016/j.rser.2019.109400.
  • Perkins, G., T. Bhaskar, and M. Konarova. 2018. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews 90:292–315. doi:10.1016/j.rser.2018.03.048.
  • Pozarlik, A., A. Bijl, N. V. Alst, E. Bramer, and G. Brem, 2015. Pyrolysis oil utilization in 50 KWe Gas turbine, in: 18th IFRF members’ conference - flexible and clean fuel conversion to industry. Presented at the 18th IFRF Members’ Conference, Freising, Germany.
  • Pucher, H., N. Schwaiger, R. Feiner, L. Ellmaier, P. Pucher, B. S. Chernev, and M. Siebenhofer. 2015. Biofuels from liquid phase pyrolysis oil: A two-step hydrodeoxygenation (HDO) process. Green Chemistry 17 (2):1291–98. doi:10.1039/C4GC01741B.
  • Resende, F. L. P. 2016. Recent advances on fast hydropyrolysis of biomass. Catalysis Today 269:148–55. doi:10.1016/j.cattod.2016.01.004.
  • Roy, P., and G. Dias. 2017. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews 77:59–69. doi:10.1016/j.rser.2017.03.136.
  • Schwaiger, N., V. Witek, R. Feiner, H. Pucher, K. Zahel, A. Pieber, P. Pucher, E. Ahn, B. Chernev, H. Schroettner, et al. 2012. Formation of liquid and solid products from liquid phase pyrolysis. Bioresource Technology 124:90–94. doi:10.1016/j.biortech.2012.07.115.
  • Singh, N. R., D. S. Mallapragada, R. Agrawal, and W. E. Tyner. 2012. Economic analysis of novel synergistic biofuel (H2Bioil) processes. Biomass Convers. Biorefinery 2:141–48. doi:10.1007/s13399-012-0043-5.
  • Tan, E. C. D., T. L. Marker, and M. J. Roberts. 2014. Direct production of gasoline and diesel fuels from biomass via integrated hydropyrolysis and hydroconversion process – A techno-economic analysis. Environmental Progress & Sustainable Energy 33 (2):609–17. doi:10.1002/ep.11791.
  • Treusch, K., J. Ritzberger, N. Schwaiger, P. Pucher, and M. Siebenhofer. 2017. Diesel production from lignocellulosic feed: The bioCRACK process. Royal Society Open Science 4 (11):171122. doi:10.1098/rsos.171122.
  • Trippe, F., M. Frohling, F. Schultmann, R. Stahl, and E. Henrich. 2010. Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste and Biomass Valorization 1 (4):415–30. doi:10.1007/s12649-010-9039-1.
  • Valimaki, E., 2013. Fast pyrolysis oil production in connection to CHP production in Joensuu, Finland, in: 4th European Conference on Renewable Heating & Cooling. Dublin, Ireland.
  • Vamvuka, D. 2011. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes–An overview. International Journal of Energy Research 35 (10):835–62. doi:10.1002/er.1804.
  • Van de Beld, B., E. Holle, and J. Florijn. 2013. The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Applied Energy 102:190–97. doi:10.1016/j.apenergy.2012.05.047.
  • World Energy Council. 2016. World energy resources bioenergy | 2016. World Energy Council, London, UK.
  • Yildiz, G., F. Ronsse, R. V. Duren, and W. Prins. 2016. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass. Renewable and Sustainable Energy Reviews 57:1596–610. doi:10.1016/j.rser.2015.12.202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.