378
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Online fuzzy control of HVAC systems considering demand response and users’ comfort

& ORCID Icon

References

  • Aftab, M., C. Chen, C. Chau, and T. Rahwan. 2017. Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy and Buildings 154:141–56. doi:10.1016/j.enbuild.2017.07.077.
  • Ahmed, S., M. S. Majid, H. Novia, and H. Abd Rahman. 2007. Fuzzy logic based energy saving technique for a central air conditioning system. Energy 32 (7):1222–34. doi:10.1016/j.energy.2006.07.025.
  • Alahäivälä, A., J. Corbishley, J. Ekström, J. Jokisalo, and M. Lehtonen. 2017. A control framework for the utilization of heating load flexibility in a day-ahead market. Electric Power Systems Research 145:44–54. doi:10.1016/j.epsr.2016.12.019.
  • Alipour, M., K. Zare, H. Seyedi, and M. Jalali. 2019. Real-time price-based demand response model for combined heat and power systems. Energy 168:1119–27. doi:10.1016/j.energy.2018.11.150.
  • Antonelli, M., P. Ducange, B. Lazzerini, and F. Marcelloni. 2009. Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework. International Journal of Approximate Reasoning 50 (7):1066–80. doi:10.1016/j.ijar.2009.04.004.
  • Ari, S., I. A. Cosden, H. E. Khalifa, J. F. Dannenhoffer, P. Wilcoxen, and C. Isik. 2005. Constrained fuzzy logic approximation for indoor comfort and energy optimization. In NAFIPS 2005–2005 Annual Meeting of the North American Fuzzy Information Processing Society, Detroit, MI, United States, 500–04. IEEE
  • Avci, M., M. Erkoc, A. Rahmani, and S. Asfour. 2013. Model predictive HVAC load control in buildings using real-time electricity pricing. Energy and Buildings 60:199–209. doi:10.1016/j.enbuild.2013.01.008.
  • Bashash, S., and H. K. Fathy. 2012. Modeling and control of aggregate air conditioning loads for robust renewable power management. IEEE Transactions on Control Systems Technology 21 (4):1318–27. doi:10.1109/TCST.2012.2204261.
  • Beil, I., I. Hiskens, and S. Backhaus. 2016. Frequency regulation from commercial building HVAC demand response. Proceedings of the IEEE 104 (4):745–57. doi:10.1109/JPROC.2016.2520640.
  • Bermejo, P., L. Redondo, L. de la Ossa, D. Rodríguez, J. Flores, C. Urea, J. A. Gamez, and J. M. Puerta. 2012. Design and simulation of a thermal comfort adaptive system based on fuzzy logic and on-line learning. Energy and Buildings 49:367–79. doi:10.1016/j.enbuild.2012.02.032.
  • Berouine, A., E. Akssas, Y. Naitmalek, F. Lachhab, M. Bakhouya, R. Ouladsine, and M. Essaaidi. 2019. A fuzzy LOGIC-BASED APPROACH for HVAC systems control. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 1510–15. IEEE
  • Bompard, E., E. Carpaneto, G. Chicco, and R. Napoli. 1996. Analysis and modelling of thermostatically-controlled loads. In Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96), Bari, Italy, Vol. 2, 730–34. IEEE
  • Callaway, D. S. 2009. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Conversion and Management 50 (5):1389–400. doi:10.1016/j.enconman.2008.12.012.
  • Chang, Y., S. Chen, and C. Liau. 2008. Fuzzy interpolative reasoning for sparse fuzzy-rule-based systems based on the areas of fuzzy sets. IEEE Transactions on Fuzzy Systems 16 (5):1285–301. doi:10.1109/TFUZZ.2008.924340.
  • Chassin, D. P., J. Stoustrup, P. Agathoklis, and N. Djilali. 2015. A new thermostat for real-time price demand response: Cost, comfort and energy impacts of discrete-time control without deadband. Applied Energy 155:816–25. doi:10.1016/j.apenergy.2015.06.048.
  • Chong, C. Y., and A. S. Debs. 1979. Statistical synthesis of power system functional load models. In 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, Fort Lauderdale, FL, USA, vol. 2, 264–69. IEEE
  • Fuller, J. C., K. P. Schneider, and D. Chassin. 2011. Analysis of residential demand response and double-auction markets. In 2011 IEEE power and energy society general meeting, Detroit, Michigan, USA, 1–7. IEEE
  • Gao, H., X. Ding, and S. Li. 2018. EPC renewable project evaluation: A fuzzy real option pricing model. Energy Sources, Part B: Economics, Planning, and Policy 13 (9–10):404–13.
  • Ghahramani, A., K. Zhang, K. Dutta, Z. Yang, and B. Becerik-Gerber. 2016. Energy saving from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings. Applied Energy 165:930–42. doi:10.1016/j.apenergy.2015.12.115.
  • Hao, H., B. M. Sanandaji, K. Poolla, and T. L. Vincent. 2014b. Aggregate flexibility of thermostatically controlled loads. IEEE Transactions on Power Systems 30 (1):189–98. doi:10.1109/TPWRS.2014.2328865.
  • Hao, H., Y. Lin, A. S. Kowli, P. Barooah, and S. Meyn. 2014a. Ancillary service to the grid through control of fans in commercial building HVAC systems. IEEE Transactions on Smart Grid 5 (4):2066–74. doi:10.1109/TSG.2014.2322604.
  • Hashemi, M., G. P. Jenkins, R. Jyoti, and A. Ozbafli. 2018. Evaluating the cost to industry of electricity outages. Energy Sources, Part B: Economics, Planning, and Policy 13 (7):340–49. doi:10.1080/15567249.2018.1501122.
  • He, X., Z. Zhang, and A. Kusiak. 2014. Performance optimization of HVAC systems with computational intelligence algorithms. Energy and Buildings 81:371–80. doi:10.1016/j.enbuild.2014.06.021.
  • Hedegaard, R. E., T. H. Pedersen, and S. Petersen. 2017. Multi-market demand response using economic model predictive control of space heating in residential buildings. Energy and Buildings 150:253–61. doi:10.1016/j.enbuild.2017.05.059.
  • Hu, J., J. Cao, M. Z. Q. Chen, J. Yu, J. Yao, S. Yang, and T. Yong. 2016. Load following of multiple heterogeneous TCL aggregators by centralized control. IEEE Transactions on Power Systems 32 (4):3157–67. doi:10.1109/TPWRS.2016.2626315.
  • Hussain, S., H. A. Gabbar, D. Bondarenko, F. Musharavati, and S. Pokharel. 2014. Comfort-based fuzzy control optimization for energy conservation in HVAC systems. Control Engineering Practice 32:172–82. doi:10.1016/j.conengprac.2014.08.007.
  • Iacovella, S., F. Ruelens, P. Vingerhoets, B. Claessens, and G. Deconinck. Cluster control of heterogeneous thermostatically controlled loads using tracer devices. IEEE Transactions on Smart Grid 8 (2) (2015): 528–536.
  • Jette, I., M. Zaheer-Uddin, and P. Fazio. 1998. PI-control of dual duct systems: Manual tuning and control loop interaction. Energy Conversion and Management 39 (14):1471–82. doi:10.1016/S0196-8904(98)00020-X.
  • Jin, G., P. Tan, X. Ding, and T. Koh. 2011. Cooling coil unit dynamic control of in HVAC system. In 2011 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 942–47. IEEE
  • Kamgarpour, M., C. Ellen, S. E. Z. Soudjani, S. Gerwinn, J. L. Mathieu, N. Müllner, A. Abate, D. S. Callaway, M. Fränzle, and J. Lygeros. 2013. Modeling options for demand side participation of thermostatically controlled loads. In 2013 IREP Symposium Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid, Rethymnon, Crete, Greece, 1–15. IEEE
  • Keshtkar, A., S. Arzanpour, and F. Keshtkar. 2015. An autonomous system via fuzzy logic for residential peak load management in smart grids. In 2015 North American Power Symposium (NAPS), Charlotte, North Carolina, USA, 1–6. IEEE
  • Kopsakangas-Savolainen, M. 2004. The welfare effects of different pricing schemes for electricity distribution in Finland. Energy Policy 32:1429–35.
  • Kusiak, A., and G. Xu. 2012. Modeling and optimization of HVAC systems using a dynamic neural network. Energy 42 (1):241–50. doi:10.1016/j.energy.2012.03.063.
  • Kusiak, A., G. Xu, and F. Tang. 2011. Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm. Energy 36 (10):5935–43. doi:10.1016/j.energy.2011.08.024.
  • Lee, Y. M., R. Horesh, and L. Liberti. 2015. Optimal HVAC control as demand response with on-site energy storage and generation system. Energy Procedia 78:2106–11. doi:10.1016/j.egypro.2015.11.253.
  • Liu, M., and Y. Shi. 2015. Model predictive control of aggregated heterogeneous second-order thermostatically controlled loads for ancillary services. IEEE Transactions on Power Systems 31 (3):1963–71. doi:10.1109/TPWRS.2015.2457428.
  • Lu, N. 2012. An evaluation of the HVAC load potential for providing load balancing service. IEEE Transactions on Smart Grid 3 (3):1263–70. doi:10.1109/TSG.2012.2183649.
  • Mathieu, J. L. Modeling, analysis, and control of demand response resources. PhD diss., UC Berkeley, 2012.
  • Mathieu, J. L., and D. S. Callaway. 2012. State estimation and control of heterogeneous thermostatically controlled loads for load following. In 2012 45th Hawaii International Conference on System Sciences, Maui, Hawaii, USA, 2002–11. IEEE
  • Molina, A., A. Gabaldon, J. A. Fuentes, and F. J. Canovas. 2000. Approach to multivariable predictive control applications in residential HVAC direct load control. In 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Como, Italy, vol. 3, 1811–16. IEEE
  • Moura, S., J. Bendtsen, and V. Ruiz. 2013. Observer design for boundary coupled PDEs: Application to thermostatically controlled loads in smart grids. In 52nd IEEE conference on decision and control, Florence, Italy, 6286–91. IEEE
  • Nowak, M., and A. Urbaniak. 2011. Utilization of intelligent control algorithms for thermal comfort optimization and energy saving. In 2011 12th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 270–74. IEEE
  • Perfumo, C., J. H. Braslavsky, and J. K. Ward. 2014. Model-based estimation of energy savings in load control events for thermostatically controlled loads. IEEE Transactions on Smart Grid 5 (3):1410–20. doi:10.1109/TSG.2014.2298840.
  • Ravindran, P., K. R. Das, and A. S. Mohan. 2014. Flexible demand response in smart grid based automatic generation control. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 1–6. IEEE
  • Rui, X., X. Liu, and J. Meng. 2016. Dynamic frequency regulation method based on thermostatically controlled appliances in the power system. Energy Procedia 88:382–88. doi:10.1016/j.egypro.2016.06.005.
  • Sarkodie, S. A. 2017. Estimating Ghana’s electricity consumption by 2030: An ARIMA forecast. Energy Sources, Part B: Economics, Planning, and Policy 12 (10):936–44. doi:10.1080/15567249.2017.1327993.
  • Serra, J., D. Pubill, M. Á. Vázquez, and C. Verikoukis. 2014. Experimental evaluation of an HVAC system under dynamic pricing with comfort constraints. In ISGT 2014, Istanbul, Turkey, 1–5. IEEE
  • Sharma, G., L. Xie, and P. R. Kumar. 2013. Large population optimal demand response for thermostatically controlled inertial loads. In 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, Canada, 259–64. IEEE
  • Soudjani, S. E. Z., and A. Abate. 2013. Aggregation of thermostatically controlled loads by formal abstractions. In 2013 European Control Conference (ECC), Zurich, Switzerland, 4232–37. IEEE
  • Stavrakas, V., and A. Flamos. 2020. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Conversion and Management 205:112339. doi:10.1016/j.enconman.2019.112339.
  • Tahersima, F., J. Stoustrup, and H. Rasmussen. 2011. Eliminating oscillations in trv-controlled hydronic radiators. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 4407–12. IEEE
  • Wang, H., H. Fang, X. Yu, and S. Liang. 2018a. How Real Time Pricing Modifies Chinese Households’ Electricity Consumption. Journal of Cleaner Production 178:776–90. doi:10.1016/j.jclepro.2017.12.251.
  • Wang, H., H. Lin, Y. Liu, Q. Sun, and R. Wennersten. 2018b. Management of household electricity consumption under price-based demand response scheme. Journal of Cleaner Production 204:926–38. doi:10.1016/j.jclepro.2018.09.019.
  • Wei, X., A. Kusiak, M. Li, F. Tang, and Y. Zeng. 2015. Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance. Energy 83:294–306. doi:10.1016/j.energy.2015.02.024.
  • Zhang, W., J. Lian, C. Chang, K. Kalsi, and Y. Sun. 2012. Reduced-order modeling of aggregated thermostatic loads with demand response. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 5592–97. IEEE

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.