236
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Energy management in microgrids considering the demand response in the presence of distributed generation resources on the IoT platform

, ORCID Icon, , &

References

  • Al-Fuqaha, A., M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials 17:2347–31. doi:10.1109/COMST.2015.2444095.
  • Asimakopoulou, G.-E., A.-L. Dimeas, and N.-D. Hatziargyriou. 2013. Leader-follower strategiesfor energy management of multi-microgrids. IEEE Transactions on Smart Grid 4:1909–16. doi:10.1109/TSG.2013.2256941.
  • Bagdadee, A.-H., L. Zhang, and S.-H. Remus. 2020. A brief review of the IoT-based energy management system in the smart industry. Artificial Intelligence and Evolutionary Computations in Engineering Systems 1056:443–59. doi:10.1007/978-981-15-0199-9_38.
  • Bahramara, S., and H. Golpîra. 2018. Robust optimization of micro-grids operation problem in the presence of electric vehicles. Sustainable Cities and Society 37:388–95. doi:10.1016/j.scs.2017.11.039.
  • Bastani, M., H. Damgacioglu, and N. Celik. 2018. A δ-constraint multi-objective optimization framework for operation planning of smart grids. Sustainable Cities and Society 38:21–30. doi:10.1016/j.scs.2017.12.006.
  • Bezdek, J.-C. 1981. Pattern recognition with fuzzy objective function algorithms. New York: Springer.
  • Bui, V.-H., H. A, and H.-M. Kim. 2018. A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid 9:1323–33. doi:10.1109/TSG.2016.2585671.
  • Bui, V.-H., A. Hussain, and H.-M. Kim. 2016. Demand bidding and real-time pricing-based optimal operation of multi-microgrids. International Journal of Smart Home 10:193–208. doi:10.14257/ijsh.2016.10.4.18.
  • Cecati, C., C. Citro, and P. Siano. 2011. Combined operations of renewable energy systems and responsive demand in a smart grid. IEEE Transactions on Sustainable Energy 2:468–76. doi:10.1109/TSTE.2011.2161624.
  • Chamandoust, H., S. Bahramara, and G. Derakhshan. 2020c. Day-ahead scheduling problem of smart micro-grid with high penetration of wind energy and demand side management strategies. Sustainable Energy Technologies and Assessments 40:100747. doi:10.1016/j.seta.2020.100747.
  • Chamandoust, H., G. Derakhshan, and S. Bahramara. 2020a. Multi-objective performance of smart hybrid energy system with Multi-optimal participation of customers in day-ahead energy market. Energy and Buildings 216:109964. doi:10.1016/j.enbuild.2020.109964.
  • Chamandoust, H., G. Derakhshan, S.-M. Hakimi, and S. Bahramara. 2019. Tri-objective optimal scheduling of smart energy hub system with schedulable loads. Journal of Cleaner Production 236:117584. doi:10.1016/j.jclepro.2019.07.059.
  • Chamandoust, H., G. Derakhshan, S.-M. Hakimi, and S. Bahramara. 2020b. Multi-objectives optimal scheduling in smart energy hub system with electrical and thermal responsive loads. Environmental and Climate Technologies 24:209–32. doi:10.2478/rtuect-2020-0013.
  • Chamandoust, H., G. Derakhshan, S.-M. Hakimi, and S. Bahramara. 2020d. Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources. Journal of Energy Storage 27:101112. doi:10.1016/j.est.2019.101112.
  • Choi, S., S. Park, D.-J. Kang, S.-J. Han, and H.-M. Kim. 2011. A microgrid energy management system for inducing optimal demand response. IEEE International Conference on Smart Grid Communications (Smart GridComm), Brussels, Belgium. doi:10.1109/SmartGridComm.2011.6102317.
  • Debnath, K., and L. Goel. 1995. Power system planning - a reliability perspective. Electric Power Systems Research 34:179–85. doi:10.1016/0378-7796(95)00976-X.
  • Elmouatamid, A., Y. Naitmalek, M. Bakhouya, R. Ouladsine, N. Elkamoun, K. Zine-Dine, and M. Khaidar. 2019. An energy management platform for micro-grid systems using Internet of Things and Big-data technologies. Journal of Systems and Control Engineering 233:904–17. doi:10.1177/0959651819856251.
  • Esmaeili, M., M. Sedighizadeh, and M. Esmaili. 2016. Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy 103:86–99. doi:10.1016/j.energy.2016.02.152.
  • Firouzmakan, P., R.-A. Hooshmand, M. Bornapourb, and A. Khodabakhshian. 2019. A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renewable and Sustainable Energy Reviews 108:355–68. doi:10.1016/j.rser.2019.04.001.
  • Frank, A., R. Asuncion, and M. Frank. 2019. Smart optimization of energy consumption using IoT. 2nd IEEE Middle East and North Africa Communications Conference (MENACOMM), Manama, Bahrain. doi: 10.1109/MENACOMM46666.2019.8988549.
  • Geoffrion, A.-M. 1972. Generalized benders decomposition. Journal of Optimization Theory and Applications 10:237–60. doi:10.1007/BF00934810.
  • Ghasemi, A., and M. Enayatzare. 2018. Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response. Renewable Energy 123:460–74. doi:10.1016/j.renene.2018.02.072.
  • Gregoratti, D., and J. Matamoros. 2015. Distributed energy trading: The multiple microgrid case. IEEE Transactions on Industrial Electronics 62:2551–59. doi:10.1109/TIE.2014.2352592.
  • Guoping, Z., W. Weijun, and M. Longbo. 2018. An overview of microgrid planning and design method. IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. doi: 10.1109/IAEAC.2018.8577763.
  • Heinzelman, W.-B., A.-P. Chandrakasan, and H. Balakrishnan. 2002. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1:660–70. doi:10.1109/TWC.2002.804190.
  • Huang, J., Y. Hong, Z. Zhao, and Y. Yuan. 2017. An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Cluster Computing 20:3071–83. doi:10.1007/s10586-017-0993-2.
  • Huang, G.-H., Y.-T. Niu, Q.-G. Lin, -X.-X. Zhang, and Y.-P. Yang. 2011. An interval-parameter chance-constraint mixed-integer programming for energy systems planning under uncertainty. Energy Sources, Part B: Economics, Planning, and Policy 6:192–205. doi:10.1080/15567240903485931.
  • Hussain, A., I.-S. Choi, Y.-H. Im, and H.-M. Kim. 2019. Optimal operation of greenhouses in microgrids perspective. IEEE Transactions on Smart Grid 10:3474–85. doi:10.1109/TSG.2018.2828942.
  • Igualada, L., C. Corchero, M. Cruz-Zambrano, and F.-J. Heredia. 2014. Optimal energy management for a residential microgrid including a vehicle-to-grid system. IEEE Transactions on Smart Grid 5:2163–72. doi:10.1109/TSG.2014.2318836.
  • Ilic, M.-D. 2007. From hierarchical to open access electric power systems. Proceedings of the IEEE USA 95:1060–84. doi: 10.1109/JPROC.2007.894711.
  • Jiang, Q., M. Xue, and G. Geng. 2013. Energy management of microgrid in grid-connected and stand-alone modes. IEEE Transactions on Power Systems 28:3380–89. doi:10.1109/TPWRS.2013.2244104.
  • Katiraei, F., and M.-R. Iravani. 2006. Power management strategies for a microgrid with multiple distributed generation units. IEEE Transactions on Power Systems 21:1821–31. doi:10.1109/TPWRS.2006.879260.
  • Katiraei, F., R. Iravani, N. Hatziargyriou, and A. Dimeas. 2008. Microgrids management. IEEE Power Energy Magazine 6:54–65. doi:10.1109/MPE.2008.918702.
  • Khajenasiri, I., A. Estebsari, M. Verhelst, and G. Gielen. 2017. A review on Internet of Things solutions for intelligent energy control in buildings for smart city applications. Energy Procedia 111:770–79. doi:10.1016/j.egypro.2017.03.239.
  • Khavari, F., A. Badri, and A. Zangeneh. 2020. Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems 115:105465. doi:10.1016/j.ijepes.2019.105465.
  • Khodaei, A. 2013. Microgrid optimal scheduling with multi-period islanding constraints. IEEE Transactions on Power Systems 29:1383–92. doi:10.1109/TPWRS.2013.2290006.
  • Khodaei, A. 2014. Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart Grid 5:1584–91. doi:10.1109/TSG.2014.2311465.
  • Khodaei, A. 2015. Provisional microgrids. IEEE Transactions on Smart Grid 6:1107–15. doi:10.1109/TSG.2014.2358885.
  • Leonori, S., M. Paschero, F. Massimo, F. Mascioli, and A. Rizzi. 2020. Optimization strategies for Microgrid energy management systems by genetic algorithms. Applied Soft Computing 86:105903. doi:10.1016/j.asoc.2019.105903.
  • Li, Z., M. Shahidehpour, and X. Liu. 2018. Cyber-secure decentralized energy management for IoT-enabled active distribution network. Journal of Modern Power Systems and Clean Energy 6:900–17. doi:10.1007/s40565-018-0425-1.
  • Lin, Q.-G., G.-H. Huang, B. Bass, Y.-F. Huang, and X.-D. Zhang. 2011. DESPU: Dynamic optimization for energy systems planning under uncertainty. Energy Sources, Part B: Economics, Planning, and Policy 6:321–38. doi:10.1080/15567240802592134.
  • Morales, J.-M., and J. Perez-Ruiz. 2007. Point estimate schemes to solve the probabilistic power flow. IEEE Transactions on Power Systems 22:1594–601. doi:10.1109/TPWRS.2007.907515.
  • Mpelogianni, V., G. Kosmas, and -P.-P. Groumpos. 2019. Modeling a microgrid using fuzzy cognitive maps. Communications in Computer and Information Science 1083:334–43. doi:10.1007/978-3-030-29743-5_27.
  • Nikmehr, N., and S.-N. Ravadanegh. 2016. Reliability evaluation of multi-microgrids considering optimal operation of small-scale energy zones under load-generation uncertainties. International Journal of Electrical Power & Energy Systems 78:80–87. doi:10.1016/j.ijepes.2015.11.094.
  • Olivares, D.-E., C.-A. Cañizares, and M. Kazerani. 2014. A centralized energy management system for isolated microgrids. IEEE Transactions on Smart Grid 5:1864–75. doi:10.1109/TSG.2013.2294187.
  • Olivares, D.-E., A.-C. Claudio, and M. Kazerani. 2011. A centralized optimal energy management system for microgrids. IEEE Power and Energy Society General Detroit, MI, USA Meeting.1–6. doi: 10.1109/PES.2011.6039527.
  • Pant, M., B. Dey, and S. Nandi. 2015. A multi-hop routing protocol for wireless sensor network based on grid clustering. Applications and Innovations in Mobile Computing (AIMoC), Kolkata, India, IEEE. doi: 10.1109/AIMOC.2015.7083842.
  • Patil, H. K., and T. M. Chen. 2017. Chapter 18 - Wireless sensor network security: The Internet of things. Computer and Information Security Handbook (Third Edition) 317–37. doi:10.1016/B978-0-12-803843-7.00018-1.
  • Pawar, P., M. TarunKumar, and P. Vittal K. 2020. An IoT based intelligent smart energy management system with accurate forecasting and load strategy for renewable generation. Measurement 152:107187. doi:10.1016/j.measurement.2019.107187.
  • Pawar, P., and P. Vittal K. 2019. Design and development of advanced smart energy management system integrated with IoT framework in smart grid environment. Journal of Energy Storage 25:100846. doi:10.1016/j.est.2019.100846.
  • Pourmousavi, S.-A., M.-H. Nehrir, C.-M. Colson, and C. Wang. 2010. Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization. IEEE Transactions on Sustainable Energy 1:193–201. doi:10.1109/TSTE.2010.2061881.
  • Rahim, S., Z. Iqbal, N. Shaheen, Z. Ali Khan, U. Qasim, S. Ahmed Khan, and N. Javaid. 2016. Ant colony optimization based energy management controller for smart grid. IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland. doi: 10.1109/AINA.2016.163.
  • Ruan, D., and J. Huang. 2019. A PSO-based uneven dynamic clustering multi-hop routing protocol for wireless sensor networks. Sensors 19:1835. doi:10.3390/s19081835.
  • Said, O., Z. AL-Makhadmeh, and A. Tolba. 2020. EMS: An energy management scheme for green IoT environments. IEEE Access 8:44983–98. doi:10.1109/ACCESS.2020.2976641.
  • Sajwan, M., D. Gosain, and A.-K. Sharma. 2018. CAMP: Cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks 25:2603–20. doi:10.1007/s11276-018-1689-0.
  • Saleem, Y., N. Crespi, M.-H. Rehmani, and R. Copeland. 2019. Internet of things-aided smart grid: Technologies, architectures, applications, prototypes, and future research directions. IEEE Access 7:62962–3003. doi:10.1109/ACCESS.2019.2913984.
  • Samanta, H., A. Bhattacharjee, M. Pramanik, A. Das, K. Das Bhattacharya, and H. Saha. 2020. Internet of things based smart energy management in a vanadium redox flow battery storage integrated bio-solar microgrid. Journal of Energy Storage 32. doi:10.1016/j.est.2020.101967.
  • Sanseverino, E.-R., M.-L. Di Silvester, M.-G. Ippolito, A. De Paola, and G. Lo Re. 2011. An execution monitoring and replanning approach for optimal energy management in microgrids. Energy 36:3429–36. doi:10.1016/j.energy.2011.03.047.
  • Shahidehpour, M., and Y. Fu. 2005. Tutorial: Benders decomposition in restructure power systems. Illinois institute of technology.
  • Siano, P., C. Cecati, H. Yu, and J. Kolbusz. 2012. Real time operation of smart grids via FCN networks and optimal power flow. IEEE Transactions on Industrial Informatics 8:944–52. doi:10.1109/TII.2012.2205391.
  • Singh, B., and D.-K. Lobiyal. 2012. A novel energy-aware cluster head selection based on particle swarm optimization for wireless sensor networks. Human-centric Computing and Information Sciences 2. doi:10.1186/2192-1962-2-13.
  • Sohrabitabar, V., M.-A. Jirdehi, and R. Hemmati. 2017. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 118:827–39. doi:10.1016/j.energy.2016.10.113.
  • Song, N.-O., J.-H. Lee, H.-M. Kim, Y.-H. Im, and J.-Y. Lee. 2015. Optimal energy management of multi-microgrids with sequentially coordinated operations. Energies 8:8371–90. doi:10.3390/en8088371.
  • Srinivasa Rao, P.-C., P.-K. Jana, and H. Banka. 2016. A particle swarm optimization-based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks 23:2005–20. doi:10.1007/s11276-016-1270-7.
  • Su, W., and J. Wang. 2012. Energy management systems in microgrid operations. The Electricity Journal 25:45–60. doi:10.1016/j.tej.2012.09.010.
  • Tsikalakis, A.-G., and N.-D. Hatziargyriou. 2008. Centralized control for optimizing microgrids operation. IEEE Transactions on Energy Conversion 23:241–48. doi:10.1109/TEC.2007.914686.
  • Wang, Z., B. Chen, J. Wang, -M.-M. Begovic, and C. Chen. 2015. Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid 6:45–53. doi:10.1109/TSG.2014.2329846.
  • Wang, Y., Y. Huang, Y. Wang, M. Zeng, F. Li, Y. Wang, and Y. Zhang. 2018. Energy management of smart micro-grid with response loads and distributed generation considering demand response. Journal of Cleaner Production 197:1069–83. doi:10.1016/j.jclepro.2018.06.271.
  • Wang, C., X. Li, Y. Liu, and H. Wang. 2014. The research on development direction and points in IoT in China power grid. International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan. doi:10.1109/InfoSEEE.2014.6948106.
  • Wang, Z., Y. Liu, Z. Ma, X. Liu, and J. Ma. 2020. LiPSG: lightweight privacy-preserving Q-learning based energy management for the IoT-enable smart grid. IEEE Internet of Things Journal 7:3935–47. doi:10.1109/JIOT.2020.2968631.
  • Wang, Z., X. Qin, and B. Liu. 2018.An energy-efficient clustering routing algorithm for WSN-assisted IoT. IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, IEEE. doi: 10.1109/WCNC.2018.8377171.
  • Wei, M., S. Ho Hong, and M. Alam. 2016. An IoT-based energy-management platform for industrial facilities. Applied Energy 164:607–19. doi:10.1016/j.apenergy.2015.11.107.
  • Wu, X., X. Hu, S. Moura, X. Yin, and V. Pickert. 2016. Stochastic control of smart home energy management with plug in electric vehicle battery energy storage and photovoltaic array. Journal of Power Sources 333:203–12. doi:10.1016/j.jpowsour.2016.09.157.
  • Wu, X., X. Wang, and C. Qu. 2014. A hierarchical framework for generation scheduling of microgrids. IEEE Transactions on Power Delivery 29:2448–57. doi:10.1109/TPWRD.2014.2360064.
  • Xia, H., R.-H. Zhang, J. Yu, and Z.-K. Pan. 2016. Energy-efficient routing algorithm based on unequal clustering and connected graph in wireless sensor networks. International Journal of Wireless Information Networks 23:141–50. doi:10.1007/s10776-016-0304-5.
  • Yagcitekin, B., O. Guler, and U. Cali. 2012. An energy management strategy for a wind power plant based on energy storage and wind power prediction. Energy Sources, Part B: Economics, Planning, and Policy 7:152–61. doi:10.1080/15567249.2011.601702.
  • Zakariazadeh, A., S. Jadid, and P. Siano. 2014. Economic-environmental energy and reserve scheduling of smart distribution systems: A multi objective mathematical programming approach. Energy Conversion and Management 78:151–64. doi:10.1016/j.enconman.2013.10.051.
  • Zhao, B., Y. Shi, X. Dong, W. Luan, and J. Bornemann. 2014. Short term operation scheduling in renewable-powered microgrids: A duality-based approach. IEEE Transaction on Sustainable Energy 5:209–17. doi:10.1109/TSTE.2013.2279837.
  • Zhao, B., Y. Shi, X. Dong, W. Luan, and J. Bornemann. 2014. Short term operation scheduling in renewable-powered microgrids: A duality-based approach. IEEE Transaction on Sustainable Energy 5:209–17. doi:10.1109/TSTE.2013.2279837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.