1,824
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the energy autonomy of urban areas as an instrument to promote the energy transition

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmed, S. D., F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman, and I. M. El-Amin. 2020. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 8 (type 1):10857–23. doi:10.1109/ACCESS.2020.2964896.
  • Akyürek, B., and B. E. Türkay. 2017. The prediction and penetration of wind energy with storage system analysis. Energy Sources, Part B: Economics, Planning, and Policy 12 (3):211–15. doi:10.1080/15567249.2015.1036330.
  • Alavipanah, S., M. Wegmann, S. Qureshi, Q. Weng, and T. Koellner. 2015. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 7 (4):4689–706. doi:10.3390/su7044689.
  • Arroyo, F. R., and L. J. Miguel. 2020. The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador. Energies 13 (15):3883. doi:10.3390/en13153883.
  • Ayala-Chauvin, M., C. Samaniego-Ojeda, G. Riba, and J. Maldonado-Correa (2021). Lifecycle Assessment of Electricity Generation transition in Ecuador BT - Innovations in Electrical and Electronic Engineering (S. Mekhilef, M. Favorskaya, R. K. Pandey, and R. N. Shaw (eds.); pp. 1–10). Springer, Singapore. doi:10.1007/978-981-16-0749-3_1.
  • Bareiß, K. 2020. Potential of power-to-heat from excess wind energy on the city level. Energy Sources, Part B: Economics, Planning and Policy 15 (1):26–43. doi:10.1080/15567249.2020.1740358.
  • Basit, A., T. Ahmad, A. Yar Ali, K. Ullah, G. Mufti, and A. D. Hansen. 2019. Flexible Modern Power System: Real-Time Power Balancing through Load and Wind Power. Energies 12 (9):1710. doi:10.3390/en12091710.
  • Benítez, Á., L. Armijos, and J. Calva. 2021. Monitoring Air Quality with Transplanted Bryophytes in a Neotropical Andean City. Life 11 (8):821. doi:10.3390/life11080821.
  • Bilgen, S., and İ. Sarıkaya. 2018. Energy conservation policy and environment for a clean and sustainable energy future. Energy Sources, Part B: Economics, Planning, and Policy 13 (3):183–89. doi:10.1080/15567249.2017.1423412.
  • Campbell, M. (2019). RStudio Projects BT - Learn RStudio IDE: Quick, Effective, and Productive Data Science (M. Campbell (ed.); pp. 39–48). Berkeley, CA: Apress. doi:10.1007/978-1-4842-4511-8_4
  • Carvajal, P. E., F. G. N. Li, R. Soria, J. Cronin, G. Anandarajah, and Y. Mulugetta. 2019. Large hydropower, decarbonisation and climate change uncertainty: Modelling power sector pathways for Ecuador. Energy Strategy Reviews 23:86–99. doi:10.1016/j.esr.2018.12.008.
  • Cevallos-Sierra, J., and J. Ramos-Martin. 2018. Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews 81:1154–65. doi:10.1016/J.RSER.2017.08.015.
  • Correa-Florez, A. C., A. Michiorri, and G. Kariniotakis. 2019. Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets. Energies 12 (6):1019. doi:10.3390/en12061019.
  • Costa-Campi, M. T., E. Jové-Llopis, and E. Trujillo-Baute. 2019. Energy poverty in Spain: An income approach analysis. Energy Sources, Part B: Economics, Planning, and Policy 14 (7–9):327–40. doi:10.1080/15567249.2019.1710624.
  • Darby, S. J. 2020. Demand response and smart technology in theory and practice: Customer experiences and system actors. Energy Policy 143 (July 2019):111573. doi:10.1016/j.enpol.2020.111573.
  • Datsiou, K. C., and M. Overend. 2018. Weibull parameter estimation and goodness-of-fit for glass strength data. Structural Safety 73:29–41. doi:10.1016/j.strusafe.2018.02.002.
  • Delponte, I., and C. Schenone. 2020. RES Implementation in Urban Areas: An Updated Overview. Sustainability 12 (1):382. doi:10.3390/su12010382.
  • Droege, P. 2018. Urban Energy Transition: Renewable Strategies for Cities and Regions. Amsterdam: Elsevier.
  • Eicker, U. 2019. Introduction: The challenges of the urban energy transition (London). 1–15. doi: 10.1016/B978-0-12-811553-4.09993-5.
  • Emblemsvåg, J. 2022. Wind energy is not sustainable when balanced by fossil energy. Applied Energy 305. doi:10.1016/j.apenergy.2021.117748.
  • Erazo, B., L. Bourrel, F. Frappart, O. Chimborazo, D. Labat, L. Dominguez-Granda, D. Matamoros, and R. Mejia. 2018. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM) for Rainfall Variability over the Pacific Slope and Coast of Ecuador. Water 10 (2):213. doi:10.3390/w10020213.
  • Guimara˜es, L. 2020. The Regulation and Policy of Latin American Energy Transitions. Amsterdam: Elsevier Science & Technology.
  • Ha, Y.-H., and S. S. Kumar. 2021. Investigating decentralized renewable energy systems under different governance approaches in Nepal and Indonesia: How does governance fail? Energy Research & Social Science 80:102214. doi:10.1016/j.erss.2021.102214.
  • Hernandez, W., J. L. Maldonado‐Correa, and A. Méndez. 2016. Frequency‐domain analysis of performance of a wind turbine. Electronics Letters 52 (3):221–23. doi:10.1049/el.2015.2711.
  • Hrnčić, B., A. Pfeifer, F. Jurić, N. Duić, V. Ivanović, and I. Vušanović. 2021. Different investment dynamics in energy transition towards a 100% renewable energy system. Energy 237:121526. doi:10.1016/j.energy.2021.121526.
  • Hui, E. G. M. 2018. Learn R for Applied Statistics: With Data Visualizations, Regressions, and Statistics. Berkeley, CA: Apress.
  • Icaza, D., D. Borge-Diez, and S. P. Galindo. 2021. Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050. Renewable Energy 170:1324–41. doi:10.1016/j.renene.2021.02.067.
  • Icaza, D., D. Borge-Diez, and S. Galindo. 2022. Analysis and proposal of energy planning and renewable energy plans in South America: Case study of Ecuador. Renewable Energy 182:314–42. doi:10.1016/j.renene.2021.09.126.
  • Icaza, D., C. Salinas, D. Moncayo, F. Icaza, A. Cárdenas, and M. A. Tello (2018). Production of Energy in the Villonaco Wind Farm in Ecuador. 2018 World Engineering Education Forum - Global Engineering Deans Council (WEEF-GEDC), 1–7. doi:10.1109/WEEF-GEDC.2018.8629596
  • Ivanov, D. 2021. Supply Chain Viability and the COVID-19 pandemic: A conceptual and formal generalisation of four major adaptation strategies. International Journal of Production Research 59 (12):3535–52. doi:10.1080/00207543.2021.1890852.
  • Jiang, X., G. Nan, H. Liu, Z. Guo, Q. Zeng, and Y. Jin. 2018. Optimization of Battery Energy Storage System Capacity for Wind Farm with Considering Auxiliary Services Compensation. Applied Sciences 8 (10):1957. doi:10.3390/app8101957.
  • Jiang, P., Y. Xing, X. Jia, and B. Guo. 2015. Weibull Failure Probability Estimation Based on Zero-Failure Data. Mathematical Problems in Engineering 2015:681232. doi:10.1155/2015/681232.
  • Johnstone, P., and C. McLeish. 2022. World wars and sociotechnical change in energy, food, and transport: A deep transitions perspective. Technological Forecasting and Social Change 174:121206. doi:10.1016/j.techfore.2021.121206.
  • Joos, G., J. Reilly, W. Bower, and R. Neal. 2017. The Need for Standardization: The Benefits to the Core Functions of the Microgrid Control System. IEEE Power and Energy Magazine 15 (4):32–40. doi:10.1109/MPE.2017.2690518.
  • Juntunen, J. K., and M. Martiskainen. 2021. Improving understanding of energy autonomy: A systematic review. Renewable and Sustainable Energy Reviews 141:110797. doi:10.1016/j.rser.2021.110797.
  • Karad, S., and R. Thakur. 2021. Efficient monitoring and control of wind energy conversion systems using Internet of things (IoT): A comprehensive review. Environment, Development and Sustainability 23 (10):14197–214. doi:10.1007/s10668-021-01267-6.
  • Kim, J. H., A. D. Mills, R. Wiser, M. Bolinger, W. Gorman, C. Crespo Montañes, and E. O’Shaughnessy. 2021. Project developer options to enhance the value of solar electricity as solar and storage penetrations increase. Applied Energy 304. doi:10.1016/j.apenergy.2021.117742.
  • Kubli, M., M. Loock, and R. Wüstenhagen. 2018. The flexible prosumer: Measuring the willingness to co-create distributed flexibility. Energy Policy 114:540–48. doi:10.1016/j.enpol.2017.12.044.
  • Kühnbach, M., A. Bekk, and A. Weidlich. 2022. Towards improved prosumer participation: Electricity trading in local markets. Energy 239:122445. doi:10.1016/j.energy.2021.122445.
  • Kühnbach, M., S. Pisula, A. Bekk, and A. Weidlich. 2020. How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany. Applied Energy 280:115947. doi:10.1016/j.apenergy.2020.115947.
  • Labussière, O., V. Banos, A. Fontaine, E. Verdeil, and A. Nadaï (2018). The Spatialities of Energy Transition Processes BT - Energy Transitions: A Socio-technical Inquiry (O. Labussière and A. Nadaï (eds.); pp. 239–75). Cham, Switzerland: Springer International Publishing. 10.1007/978-3-319-77025-3_6
  • Lazaro, L. L. B., R. S. Soares, C. Bermann, F. M. A. Collaço, L. L. Giatti, and S. Abram. 2022. Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime? Energy Research & Social Science 85:102404. doi:10.1016/j.erss.2021.102404.
  • López, M. 2020. Daylight effect on the electricity demand in Spain and assessment of Daylight Saving Time policies. Energy Policy 140:111419. doi:10.1016/j.enpol.2020.111419.
  • Luque-Ayala, A., S. Marvin, and H. Bulkeley. 2018. Rethinking Urban Transitions: Politics in the Low Carbon City. London: Taylor & Francis.
  • Maldonado-Correa, J., J. C. Solano, and M. Rojas-Moncayo. 2019. Wind power forecasting: A systematic literature review. Wind Engineering 0309524X19891672. doi:10.1177/0309524X19891672.
  • Maldonado-Correa, J., M. Valdiviezo-Condolo, M. S. Viñan-Ludeña, C. Samaniego-Ojeda, and M. Rojas-Moncayo. 2020. Wind power forecasting for the Villonaco wind farm. Wind Engineering 0309524X2096881. doi:10.1177/0309524X20968817.
  • Martínez-Cervantes, G. 2016. Riemann integrability versus weak continuity. Journal of Mathematical Analysis and Applications 438 (2):840–55. doi:10.1016/j.jmaa.2016.01.054.
  • Medrano, K., D. Altuve, K. Belloso, and C. Bran (2018). Development of SCADA using a RTU based on IoT controller. 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). Valparaíso, Chile, 1–6. doi:10.1109/ICA-ACCA.2018.8609700.
  • Minin, V. A., and A. I. Furtaev (2018). Prospects for the Development of Wind Energy Resources in the Western Sector of the Arctic Zone of Russia. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, Russia, 1–4. doi: 10.1109/FarEastCon.2018.8602694.
  • Mohammad, N., and Y. Mishra. 2018. The Role of Demand Response Aggregators and the Effect of GenCos Strategic Bidding on the Flexibility of Demand. Energies 11 (12):3296. doi:10.3390/en11123296.
  • Montealegre, A. L., S. García-Pérez, S. Guillén-Lambea, M. Monzón-Chavarrías, and J. Sierra-Pérez. 2022. GIS-based assessment for the potential of implementation of food-energy-water systems on building rooftops at the urban level. Science of the Total Environment 803. doi:10.1016/j.scitotenv.2021.149963.
  • Moreno, J., G. Bernal, and J. Espinosa (2018). Introduction - The Soils of Ecuador (J. Espinosa, J. Moreno, and G. Bernal (eds.); pp. 1–25). Cham, Switzerland: Springer International Publishing. 10.1007/978-3-319-25319-0_1.
  • Nadaï, A., and O. Labussière (2018). New Energy Resources in the Making BT - Energy Transitions: A Socio-technical Inquiry (O. Labussière and A. Nadaï (eds.); pp. 49–100). Cham, Switzerland: Springer International Publishing. 10.1007/978-3-319-77025-3_2.
  • O’Connell, S., G. Reynders, and M. M. Keane. 2021. Impact of source variability on flexibility for demand response. Energy 237:121612. doi:10.1016/j.energy.2021.121612.
  • Oree, V., S. Z. Sayed Hassen, and P. J. Fleming. 2017. Generation expansion planning optimisation with renewable energy integration: A review. Renewable and Sustainable Energy Reviews 69:790–803. doi:10.1016/j.rser.2016.11.120.
  • Perdomo, W., J. López-Presa, and J. Maldonado. 2016. Power Performance Verification of a Wind Farm Using the Friedman’s Test. Sensors 16:816. doi:10.3390/s16060816.
  • Ponce-Campuzano, J. C., and M. Á. Maldonado-Aguilar. 2014. The fundamental theorem of calculus within a geometric context based on Barrow’s work. International Journal of Mathematical Education in Science and Technology 45 (2):293–303. doi:10.1080/0020739X.2013.822586.
  • Posso Rivera, F., J. Zalamea, J. L. Espinoza, and L. G. Gonzalez. 2022. Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews 156:112005. doi:10.1016/j.rser.2021.112005.
  • Rahman, M., S. Tanzil, R. H. Ritu, and D. M. Kamunya (2021). Geographical distribution of renewable energy production for maximum efficiency and environmental sustainability. 2021 9th International Conference on Modern Power Systems (MPS). Cluj-Napoca, Romania, 1–6. doi: 10.1109/MPS52805.2021.9492681.
  • Raunbak, M., T. Zeyer, K. Zhu, and M. Greiner. 2017. Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network. Energies 10 (12):1934. doi:10.3390/en10121934.
  • Reyes, A., P. H. Ibargüengoytia, J. D. Jijón, T. Guerrero, U. A. García, and M. Borunda (2017). Wind Power Forecasting for the Villonaco Wind Farm Using AI Techniques BT - Advances in Soft Computing (O. Pichardo-Lagunas and S. Miranda-Jiménez (eds.); pp. 226–36). Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-62428-0_19.
  • Richard, A., and P. Appiah-Kubi. 2017. Design and performance of a split protocol architecture on Distributed Network Protocol. 2017 IEEE International Conference on Electro Information Technology (EIT) 3 (DNP3):249–53. doi:10.1109/EIT.2017.8053364.
  • Ruiz, G. S., S. I. Valencia, I. J. Guevara, and R. J. L. López (2019). Comparative of wind systems vs photovoltaic for the implementation in the electric network of Veracruz Port. 2019 IEEE International Conference on Engineering Veracruz (ICEV), I Boca del Río, Veracruz, Mexico, 1–4. 10.1109/ICEV.2019.8920462.
  • Sánchez, S., V. Hidalgo, M. Velasco, D. Puga, P. A. López-Jiménez, and M. Pérez Sánchez. 2021. Parametric study of a horizontal axis wind turbine with similar characteristics to those of the Villonaco wind power plant. Journal of Applied Research in Technology & Engineering 2 (2):51. doi:10.4995/jarte.2021.15056.
  • Shi, Y., and N. Chen. 2021. Conditional Kernel Density Estimation Considering Autocorrelation for Renewable Energy Probabilistic Modeling. IEEE Transactions on Power Systems 36 (4):2957–65. doi:10.1109/TPWRS.2020.3046123.
  • Singh, C., A. Nivangune, and M. Patwardhan (2017). Function code based vulnerability analysis of DNP3. 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems, ANTS 2016. Bangalore, India. doi:10.1109/ANTS.2016.7947865.
  • Solano, J. C., T. Montaño, J. Maldonado-Correa, A. Ordóñez, and M. Pesantez. 2021. Correlation between the wind speed and the elevation to evaluate the wind potential in the southern region of Ecuador. Energy Reports 7:259–68. doi:10.1016/j.egyr.2021.06.044.
  • Sperstad, B. I., and M. Korpås. 2019. Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties. Energies 12 (7):1231. doi:10.3390/en12071231.
  • Spodniak, P., K. Ollikka, and S. Honkapuro. 2021. The impact of wind power and electricity demand on the relevance of different short-term electricity markets: The Nordic case. Applied Energy 283 (December 2020):116063. doi:10.1016/j.apenergy.2020.116063.
  • Spyridaki, N. A., V. Stavrakas, Y. Dendramis, and A. Flamos. 2020. Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector. Energy Policy 140 (March):111413. doi:10.1016/j.enpol.2020.111413.
  • Syranidou, C., J. Linssen, D. Stolten, and M. Robinius. 2020. Integration of Large-Scale Variable Renewable Energy Sources into the Future European Power System: On the Curtailment Challenge. Energies 13 (20):5490. doi:10.3390/en13205490.
  • Taylor, M. E. 2020. Introduction to Analysis in Several Variables: Advanced Calculus. Rhode Island USA: American Mathematical Society.
  • Taylor, P. C., M. Abeysekera, Y. Bian, D. Ćetenović, M. Deakin, A. Ehsan, V. Levi, F. Li, R. Oduro, R. Preece, et al. 2022. An interdisciplinary research perspective on the future of multi-vector energy networks. International Journal of Electrical Power & Energy Systems 135:107492. doi:10.1016/j.ijepes.2021.107492.
  • Thornton, H. E., A. A. Scaife, B. J. Hoskins, and D. J. Brayshaw. 2017. The relationship between wind power, electricity demand and winter weather patterns in Great Britain. Environmental Research Letters 12 (6):064017. doi:10.1088/1748-9326/aa69c6.
  • Tsao, Y.-C., T.-L. Vu, and J.-C. Lu. 2021. Pricing, capacity and financing policies for investment of renewable energy generations. Applied Energy 303. doi:10.1016/j.apenergy.2021.117664.
  • Tyralis, H., G. Karakatsanis, K. Tzouka, and N. Mamassis. 2017. Data and code for the exploratory data analysis of the electrical energy demand in the time domain in Greece. Data in Brief 13:700–02. doi:10.1016/j.dib.2017.06.033.
  • Vicuña, D. M., and J. E. Pérez. 2020. La política de energía eólica y sus efectos sobre el desarrollo local. Un análisis a partir del sistema de actores (Loja, Ecuador). Anales de Geografía de La Universidad Complutense 40 (1 SE–Estudios e investigaciones). doi: 10.5209/aguc.69333.
  • von Krauland, A.-K., F.-H. Permien, P. Enevoldsen, and M. Z. Jacobson. 2021. Onshore wind energy atlas for the United States accounting for land use restrictions and wind speed thresholds. Smart Energy 3:100046. doi:10.1016/j.segy.2021.100046.