118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Economic optimization of enhanced geothermal systems using a fully analytical temperature profile

ORCID Icon, , & ORCID Icon

References

  • Abbasi, M., M. Mansouri, A. Daryasafar, and M. Sharifi. 2018. Analytical model for heat transfer between vertical fractures in fractured geothermal reservoirs during water injection. Renewable Energy. doi:10.1016/j.renene.2018.06.043.
  • Algieri, A., and J. Sebo. 2017. Energetic investigation of organic rankine cycles (ORCs) for the exploitation of low-temperature geothermal sources–a possible application in Slovakia. Procedia Computer Science 109:833–16. doi:10.1016/j.procs.2017.05.348.
  • Ascencio, F., and F. Samaniego. 2014. A heat loss analytical model for the thermal front displacement in naturally fractured reservoirs. Geothermics 50:112–21. doi: 10.1016/j.geothermics.2013.09.002.
  • Babaei, M., and H. Nick. 2019. Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well doublet spacings. Applied Energy 253:113569. doi:10.1016/j.apenergy.2019.113569.
  • Bertani, R. 2016. Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43. doi:10.1016/j.geothermics.2015.11.003.
  • Bodvarsson, G. 1969. On the temperature of water flowing through fractures. Journal of Geophysical Research 74 (8):1987–92. doi:10.1029/JB074i008p01987.
  • Bodvarsson, G. S., and C. F. Tsang. 1982. Injection and thermal breakthrough in fractured geothermal reservoirs. Journal of Geophysical Research 87 (B2):1031–48. doi:10.1029/JB087iB02p01031.
  • Cheng, A. H.-D., A. Ghassemi, and E. Detournay. 2001. Integral equation solution of heat extraction from a fracture in hot dry rock. International Journal for Numerical and Analytical Methods in Geomechanics 25 (13):1327–38. doi:10.1002/nag.182.
  • Eliasson, E. T. 2001. Power generation from high-enthalpy geothermal resources. GHC Bulletin 1:26–34.
  • Fan, Z., and R. Parashar. 2019. Analytical solutions for a wellbore subjected to a non-isothermal fluid flux: implications for optimizing injection rates, fracture reactivation, and EGS hydraulic stimulation. Rock Mechanics and Rock Engineering 52 (11):4715–29. doi:10.1007/s00603-019-01867-9.
  • Fox, D. B., D. L. Koch, and J. W. Tester. 2015. The effect of spatial aperture variations on the thermal performance of discretely fractured geothermal reservoirs. Geothermal Energy 3 (21): 3–21.
  • Ghassemi, A., S. Tarasovs, and A. H. D. Cheng. 2003. An integral equation solution for three dimensional heat extraction from planar fracture in hot dry rock. International Journal for Numerical and Analytical Methods in Geomechanics 27 (12):989–1004. doi:10.1002/nag.308.
  • Ghassemi, A., and X. Zhou. 2011. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems. Geothermics 40 (1):39–40. doi:10.1016/j.geothermics.2010.12.001.
  • Gringarten, A. C., P. A. Witherspoon, and Y. Ohnisi. 1975. Theory of heat extraction from fractured hot dry rock. Journal of Geophysical Research 80 (8):1120–25. doi:10.1029/JB080i008p01120.
  • Huttrer, G. W. 2020. “Geothermal power generation in the World 2015-2020 update report.” Proceedings World Geothermal Congress 2020. Reykjavik.
  • Kong, Y., Z. Pang, H. Shao, and O. Kolditz. 2017. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis. Environ Earth Sci 76 (118): 117–24. doi:10.1007/s12665-017-6404-4.
  • Lauwerir, H. A. 1955. The transport of heat in an oil layer caused by the injection of hot fluid. Applied Science Resources 5 (Section A):145–51. doi:10.1007/BF03184614.
  • Liu, X., G. Falcone, and C. Alimonti. 2018. A systematic study of harnessing low-temperature geothermal energy. Energy 142:346–55. doi:10.1016/j.energy.2017.10.058.
  • Lund, J. W. 2009. Characteristics, Development and utilization of geothermal resources geo-heat centre quarterly bulletin, klamath falls, Oregon: Oregon institute of technology 31 (2):140–147. doi:10.18814/epiiugs/2008/v31i1/019.
  • Ma, R., and C. Zheng. 2010. Effects of density and viscosity in modeling heat as a ground water tracer. Ground Water 48 (3):380–89. doi:10.1111/j.1745-6584.2009.00660.x.
  • Olasolo, P., M. C. Juarez, J. Olasolo, M. P. Morales, and D. Vldani. 2016. Economic analysis of Enhanced Geothermal Systems (EGS). A review of software packages for estimating and simulating costs. Applied Thermal Engineering 104:647–58. doi:10.1016/j.applthermaleng.2016.05.073.
  • Pandey, S., A. Chaudhuri, and S. Kelkar. 2017. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics 65:17–31. doi:10.1016/j.geothermics.2016.08.006.
  • Pandey, S., and V. Vishal. 2017. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems. Scientific Reports 7 (1):1–14. doi:10.1038/s41598-017-14273-4.
  • Patterson, J. R., M. Cardiff, and C. L. Feigl. 2020. Optimizing geothermal production in fractuRed Rock reservoirs under uncertainty. Geothermics 88:101906. doi:10.1016/j.geothermics.2020.101906.
  • Saeid, S., R. Al-Khoury, H. M. Nick, and M. A. Hicks. 2015. A prototype design model for deep low-enthalpy hydrothermal systems. Renewable Energy 77:408–22. doi:10.1016/j.renene.2014.12.018.
  • Salimzadeh, S., H. M. Nick, and R. Zimmerman. 2018. Thermoporoelastic effects during heat extraction from low-permeability reservoirs. Energy 142:546–58. doi:10.1016/j.energy.2017.10.059.
  • Salimzadeh, S., A. Paluszny, M. N. Hamidreza, and W. Z. Robert. 2018. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems. Geothermics 71:212–24. doi:10.1016/j.geothermics.2017.09.012.
  • Wu, B., X. Zhang, R. G. Jeffrey, A. P. Bunger, and S. Jia. 2016. A simplified model for heat extraction by circulating fluid through a closed-loop multiple-fracture enhanced geothermal system. Applied Energy 183:1664–81. doi:10.1016/j.apenergy.2016.09.113.
  • Wu, B., G. Zhang, X. Zhang, R.G. Jeffery, J. Kear, and T. Zhao. 2017. Semi-analytical model for a geothermal system considering the effect of areal flow between dipole wells on heat extraction. Energy 138:290–305. doi:10.1016/j.energy.2017.07.043.
  • Xina, Y., Z. Sun, L. Zhuang, J. Yao, K. Zhang, D. Fan, K. Bongole, T. Wang, and C. Jiang. 2019. Numerical simulation of fluid flow and heat transfer in EGS with thermal-hydraulic-mechanical coupling method based on a rough fracture model. Energy Procedia 158:6038–45. doi:10.1016/j.egypro.2019.01.514.
  • Yijia, T., M. Tianshou, P. Chen, and P. G. Ranjith. 2020. An analytical model for heat extraction through multi-link fractures of the enhanced geothermal system. Geomechanics Geophysica Geo-energy Geo-Resources. doi:10.1007/s40948-019-00123-2.
  • Zhao, Z. 2014. On the heat transfer coefficient between rock fracture walls and flowing fluid. Computers and Geotechnics 59:105–11. doi:10.1016/j.compgeo.2014.03.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.