197
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The current status of carbon capture and storage development in Japan: potency, policy, demonstration projects, implication, and scenario model in emission reduction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abas, N., A. Kalair, and N. Khan. 2015. Review of fossil fuels and future energy technologies. Futures 69:31–26. doi:10.1016/j.futures.2015.03.003.
  • Abdul Quader, M., S. Ahmed, S. Z. Dawal, and Y. Nukman. 2016. Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO) steelmaking (ULCOS) program. Renewable and Sustainable Energy Reviews 55:537–49. doi:10.1016/j.rser.2015.10.101.
  • Abe, M., S. Saito, D. Tanase, Y. Sawada, Y. Hirama, and Y. Motoyama. 2013. CCS large-scale demonstration in Japan. Energy Procedia 37:6326–34. doi:10.1016/J.EGYPRO.2013.06.561.
  • Adu, E., Y. Zhang, and D. Liu. 2019. Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry. The Canadian Journal of Chemical Engineering 97 (5):1048–76. doi:10.1002/cjce.23393.
  • Alcalde, J., N. Heinemann, L. Mabon, R. H. Worden, H. de Coninck, H. Robertson, M. Maver, S. Ghanbari, F. Swennenhuis, I. Mann, et al. 2019. Acorn: Developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province. Journal of Cleaner Production 233:963–71. doi:10.1016/j.jclepro.2019.06.087.
  • Aoun, M.-C., and S. Cornot-Gandolphe. 2015. The European gas market looking for its golden age? (issue October). IRFI. http://inis.iaea.org/search/search.aspx?orig_q=RN:48018623.
  • Arafah, W., L. Nugroho, R. Takaya, and S. Soekapdjo. 2018. Marketing strategy for renewable energy development in Indonesia context today. International Journal of Energy Economics & Policy 8 (5):181–86.
  • Arnette, A. N. 2017. Renewable energy and carbon capture and sequestration for a reduced carbon energy plan: An optimization model. Renewable and Sustainable Energy Reviews 70:254–65. doi:10.1016/j.rser.2016.11.218.
  • Asayama, S., and A. Ishii. 2017. Selling stories of techno-optimism? The role of narratives on discursive construction of carbon capture and storage in the Japanese media. Energy Research & Social Science 31:50–59. doi:10.1016/J.ERSS.2017.06.010.
  • Banks, F. E. 2015. Energy and economic theory. Vol. 9. WORLD SCIENTIFIC. doi:10.1142/8240.
  • Bataille, C., D. Sawyer, N. Melton, and R. Adamson. 2015. PATHWAYS to DEEP DECARBONIZATION in CANADA phase 2 report: Draft final for comment. https://cmcghg.com/wp-content/uploads/2015/07/Final-Canada-DDPP-Country-Report-July-14.pdf
  • Bhat, A. A., and P. P. Mishra. 2020. Evaluating the performance of carbon tax on green technology: Evidence from India. Environmental Science and Pollution Research 27 (2):2226–37. doi:10.1007/s11356-019-06666-x.
  • Bolton, R., T. J. Foxon, and S. Hall. 2016. Energy transitions and uncertainty: Creating low carbon investment opportunities in the UK electricity sector. Environment & Planning. C, Government & Policy 34 (8):1387–403. doi:10.1177/0263774X15619628.
  • Buckley, T., and S. Nicholas. 2017. Japan: Greater energy security through renewables - electricity transformation in a post-nuclear economy. Institute for Energy Economics and Financial Analysis. http://ieefa.org/ieefa-report-renewables-path-japanese-energy-security-post-nuclear-era/
  • Bui, M., C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, et al. 2018. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science 11 (5):1062–176. doi:10.1039/C7EE02342A.
  • Calderón, S., A. C. Alvarez, A. M. Loboguerrero, S. Arango, K. Calvin, T. Kober, K. Daenzer, and K. Fisher-Vanden. 2016. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Economics 56:575–86. doi:10.1016/j.eneco.2015.05.010.
  • Celia, M. A. 2017. Geological storage of captured carbon dioxide as a large-scale carbon mitigation option. Water Resources Research 53 (5):3527–33. doi:10.1002/2017WR020841.
  • Chapman, A., B. McLellan, L. Mabon, J. Yap, S. C. Karmaker, and K. K. Sen. 2023. The just transition in Japan: Awareness and desires for the future. Energy Research & Social Science 103:103228. doi:10.1016/j.erss.2023.103228.
  • Chen, W., J. Chen, and Y. Ma. 2021. Renewable energy investment and carbon emissions under cap-and-trade mechanisms. Journal of Cleaner Production 278:123341. doi:10.1016/J.JCLEPRO.2020.123341.
  • Cheng, Y., A. Sinha, V. Ghosh, T. Sengupta, and H. Luo. 2021. Carbon tax and energy innovation at crossroads of carbon neutrality: Designing a sustainable decarbonization policy. Journal of Environmental Management 294:112957. doi:10.1016/J.JENVMAN.2021.112957.
  • Chen, X., X. Wang, and Y. Xia. 2021. Low-carbon technology transfer between rival firms under cap-and-trade policies. IISE Transactions 54 (2):1–17. doi:10.1080/24725854.2021.1925786.
  • Coady, D., I. Parry, L. Sears, and B. Shang. 2017. How Large Are Global Fossil Fuel Subsidies? World Development 91:11–27. doi:10.1016/j.worlddev.2016.10.004.
  • Dagoumas, A. S., and N. E. Koltsaklis. 2019. Review of models for integrating renewable energy in the generation expansion planning. Applied Energy 242:1573–87. doi:10.1016/J.APENERGY.2019.03.194.
  • Denning, A. S. 2018. Combustion to concentration to warming: What do climate targets mean for emissions? Climate change and the global carbon cycle. In Encyclopedia of the anthropocene, 443–52. Elsevier. doi:10.1016/B978-0-12-809665-9.09743-3.
  • Ding, S., M. Zhang, and Y. Song. 2019. Exploring China’s carbon emissions peak for different carbon tax scenarios. Energy Policy 129:1245–52. doi:10.1016/J.ENPOL.2019.03.037.
  • Di Sbroiavacca, N., G. Nadal, F. Lallana, J. Falzon, and K. Calvin. 2016. Emissions reduction scenarios in the Argentinean energy sector. Energy Economics 56:552–63. doi:10.1016/j.eneco.2015.03.021.
  • Fang, G., L. Tian, M. Fu, M. Sun, R. Du, and M. Liu. 2017. Investigating carbon tax pilot in YRD urban agglomerations—analysis of a novel ESER system with carbon tax constraints and its application. Applied Energy 194:635–47. doi:10.1016/j.apenergy.2016.02.041.
  • Fan, J.-L., S. Shen, M. Xu, Y. Yang, L. Yang, and X. Zhang. 2020. Cost-benefit comparison of carbon capture, utilization, and storage retrofitted to different thermal power plants in China based on real options approach. Advances in Climate Change Research 11 (4):415–28. doi:10.1016/j.accre.2020.11.006.
  • Farajzadeh, R., A. A. Eftekhari, G. Dafnomilis, L. W. Lake, and J. Bruining. 2020. On the sustainability of CO2 storage through CO2 – enhanced oil recovery. Applied Energy 261:114467. doi:10.1016/j.apenergy.2019.114467.
  • Farhat, K., J. Koplin, D. Lewis, S. Peterlin, and R. Simms. 2013. Financial assessment of CO2 capture and storage with electricity trading in the U.S.: Role of interim storage and enhanced oil recovery. Energy Procedia 37:7512–25. doi:10.1016/j.egypro.2013.06.695.
  • Fiévet, L., Z. Forró, P. Cauwels, and D. Sornette. 2015. A general improved methodology to forecasting future oil production: Application to the UK and Norway. Energy 79:288–97. doi:10.1016/j.energy.2014.11.014.
  • Fujimori, S., N. Hanasaki, and T. Masui. 2017. Projections of industrial water withdrawal under shared socioeconomic pathways and climate mitigation scenarios. Sustainability Science 12 (2):275–92. doi:10.1007/s11625-016-0392-2.
  • Gabrielli, P., A. Wegner, M. R. Sierra-Hernández, E. Beaudon, M. Davis, J. D. Barker, and L. G. Thompson. 2020. Early atmospheric contamination on the top of the Himalayas since the onset of the European industrial revolution. Proceedings of the National Academy of Sciences 117 (8):3967–73. doi:10.1073/pnas.1910485117.
  • Global CCS Institute. 2016. “Japan’s legal and regulatory framework for CCS.” https://www.globalccsinstitute.com/news-media/insights/japans-legal-and-regulatory-framework-for-ccs/.
  • Goldthorpe, W., and L. Avignon. 2021. A systems approach to business models and public-private risk sharing for large scale CCS deployment. SSRN Electronic Journal. doi:10.2139/SSRN.3816435.
  • Guo, Z. Q., and H. B. Liu. 2016. The impact of carbon tax policy on energy consumption and CO 2 emission in China. Energy Sources, Part B: Economics, Planning, & Policy 11 (8):725–31. doi:10.1080/15567249.2012.715723.
  • Hájek, M., J. Zimmermannová, K. Helman, and L. Rozenský. 2019. Analysis of carbon tax efficiency in energy industries of selected EU countries. Energy Policy 134:110955. doi:10.1016/J.ENPOL.2019.110955.
  • Haszeldine, R. S., S. Flude, G. Johnson, and V. Scott. 2018. Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2119):20160447. doi:10.1098/RSTA.2016.0447.
  • He, K., and L. Wang. 2017. A review of energy use and energy-efficient technologies for the iron and steel industry. Renewable and Sustainable Energy Reviews 70:1022–39. doi:10.1016/j.rser.2016.12.007.
  • Holz, F., T. Scherwath, P. Crespo Del Granado, C. Skar, L. Olmos, Q. Ploussard, A. Ramos, and A. Herbst. 2021. A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector. Energy Economics 104:105631. doi:10.1016/J.ENECO.2021.105631.
  • Hong, J. H., C. Kim, and H. Shin. 2014. Power sector in developing Asia: Current status and policy issues. SSRN Electronic Journal. doi:10.2139/ssrn.2510908.
  • Huang, J., and K. Nagasaka. 2011. The trend of greenhouse gas emission for Japan large emitting industries under Kyoto protocol. The 2nd International Conference on Environmental Engineering and Applications, Shanghai, China, August 19–21, pp. 84–88.
  • Hussain, M., A. R. Butt, F. Uzma, R. Ahmed, T. Islam, and B. Yousaf. 2019. A comprehensive review of sectorial contribution towards greenhouse gas emissions and progress in carbon capture and storage in Pakistan. Greenhouse Gases: Science and Technology 9 (4):617–36. doi:10.1002/ghg.1890.
  • Idowu, S., S. Saguna, C. Åhlund, and O. Schelén. 2016. Applied machine learning: Forecasting heat load in district heating system. Energy and Buildings 133:478–88. doi:10.1016/j.enbuild.2016.09.068.
  • International Energy Agency. 2021. Japan 2021 energy policy review. Iea.
  • JAEA. 2019. Future vision JAEA 2050+. https://www.jaea.go.jp/english/about/future_vision/future_vision.pdf.
  • Kåberger, T. 2018. Progress of renewable electricity replacing fossil fuels. Global Energy Interconnection 1 (1):48–52. doi:10.14171/j.2096-5117.gei.2018.01.006.
  • Kaddoura, S., and S. El Khatib. 2017. Review of water-energy-food nexus tools to improve the nexus modelling approach for integrated policy making. Environmental Science & Policy 77:114–21. doi:10.1016/J.ENVSCI.2017.07.007.
  • Kannan, R. 2011. The development and application of a temporal MARKAL energy system model using flexible time slicing. Applied Energy 88 (6):2261–72. doi:10.1016/j.apenergy.2010.12.066.
  • Kato, E., and A. Kurosawa. 2019. Evaluation of Japanese energy system toward 2050 with TIMES-Japan – deep decarbonization pathways. Energy Procedia 158:4141–46. doi:10.1016/j.egypro.2019.01.818.
  • Kato, H., H. Shiroyama, and Y. Nakagawa. 2014. Public policy structuring incorporating reciprocal expectation analysis. European Journal of Operational Research 233 (1):171–83. doi:10.1016/j.ejor.2013.08.019.
  • Kaushik, H., M. Mathew, and J. Hossain. 2019. Comparative analysis of green house gas emission from different vehicular fuels. 2018 International Conference on Power Energy, Environment and Intelligent Control, PEEIC 2018, 702–06. 10.1109/PEEIC.2018.8665618
  • Kawai, E., A. Ozawa, and B. D. Leibowicz. 2022. Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan. Applied Energy 328:120183. doi:10.1016/j.apenergy.2022.120183.
  • Kazakevicius, E., Z. Korac, O. Khalaim, M. Edwards, R. De Miglio, A. Chiodi, N. Duic, G. Krajacic, and N. Matak. 2018. Local action planning towards energy security and sustainability manual. The Regional Environmental Center for Central and Eastern Europe (REC). M. Edwards (ed.); Issue September manual final_mali fajl.pdf http://link-ukraine.rec.org/uploads/documents/LAP.
  • Keith, D. W., G. Holmes, D. St. Angelo, and K. Heidel. 2018. A process for capturing CO2 from the atmosphere. Joule 2 (8):1573–94. doi:10.1016/j.joule.2018.05.006.
  • Khan, M. I. 2017. Falling oil prices: Causes, consequences and policy implications. Journal of Petroleum Science and Engineering 149:409–27. doi:10.1016/j.petrol.2016.10.048.
  • Kijewska, A., and A. Bluszcz. 2016. Analysis of greenhouse gas emissions in the European Union member states with the use of an agglomeration algorithm. Journal of Sustainable Mining 15 (4):133–42. doi:10.1016/j.jsm.2017.02.001.
  • Kiko Network. 2008. Greenhouse gas emissions in Japan analysis of first data reported (FY2006) from emissions accounting, reporting and disclosure system for large emitters under Japan’s “the law concerning the protection of the measures to cope with global warming.” http://www.kikonet.org/english/publication/archive/japansGHGemission_E.pdf
  • Komiyama, R., and Y. Fujii. 2015. Long-term scenario analysis of nuclear energy and variable renewables in Japan’s power generation mix considering flexible power resources. Energy Policy 83:169–84. doi:10.1016/j.enpol.2015.04.005.
  • Krzemień, J. 2013. Application of markal model generator in optimizing energy systems. Journal of Sustainable Mining 12 (2):35–39. doi:10.7424/JSM130205.
  • Kubota, H., and A. Shimota. 2017. How should information about CCS be shared with the Japanese public? Energy Procedia 114:7205–11. doi:10.1016/J.EGYPRO.2017.03.1827.
  • Kuramochi, T. 2015. Review of energy and climate policy developments in Japan before and after Fukushima. Renewable and Sustainable Energy Reviews 43:1320–32. doi:10.1016/j.rser.2014.12.001.
  • Kuriyama, A., K. Tamura, and T. Kuramochi. 2019. Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan’s NDC. Energy Policy 130:328–40. doi:10.1016/j.enpol.2019.03.055.
  • Kurosawa, A., and N. Hagiwara. 2011. Long term energy system analysis of Japan after. Japan (IEEJ): The Institute of Energy Economics.
  • Kuzemko, C., M. Bradshaw, G. Bridge, A. Goldthau, J. Jewell, I. Overland, D. Scholten, T. Van de Graaf, and K. Westphal. 2020. Covid-19 and the politics of sustainable energy transitions. Energy Research & Social Science 68:101685. doi:10.1016/j.erss.2020.101685.
  • Larkin, P., W. Leiss, and D. Krewski. 2019. Risk assessment and management frameworks for carbon capture and geological storage: a global perspective. International Journal of Risk Assessment and Management 22 (3/4):254. doi:10.1504/IJRAM.2019.103332.
  • Lau, H. C. 2021. The role of fossil fuels in a hydrogen economy. doi:10.2523/IPTC-21162-MS.
  • Le Billon, P., and B. Kristoffersen. 2020. Just cuts for fossil fuels? Supply-side carbon constraints and energy transition. Environment & Planning A: Economy & Space 52 (6):1072–92. doi:10.1177/0308518X18816702.
  • Lelieveld, J., K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, and V. Ramanathan. 2019. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences 116 (15):7192–97. doi:10.1073/pnas.1819989116.
  • Lewis, S. L., C. E. Wheeler, E. T. A. Mitchard, and A. Koch. 2019. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568 (7750):25–28. doi:10.1038/d41586-019-01026-8.
  • Li, K. W., Z. Liu, X. Li, K. Xue, and G. Sun. 2022. Impacts of supply chain competition on firms’ carbon emission reduction and social welfare under cap-and-trade regulation. International Journal of Environmental Research and Public Health 19 (6):3226. doi:10.3390/IJERPH19063226.
  • Linghu, D., X. Wu, K. H. Lai, F. Ye, A. Kumar, and K. H. Tan. 2022. Implementation strategy and emission reduction effectiveness of carbon cap-and-trade in heterogeneous enterprises. International Journal of Production Economics 248:108501. doi:10.1016/J.IJPE.2022.108501.
  • Lin, B., and Z. Jia. 2019. How does tax system on energy industries affect energy demand, CO2 emissions, and economy in China? Energy Economics 84:104496. doi:10.1016/j.eneco.2019.104496.
  • Longden, T., F. J. Beck, F. Jotzo, R. Andrews, and M. Prasad. 2022. ‘Clean’ hydrogen? – comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy 306:118145. doi:10.1016/J.APENERGY.2021.118145.
  • Lopion, P., P. Markewitz, M. Robinius, and D. Stolten. 2018. A review of current challenges and trends in energy systems modeling. Renewable and Sustainable Energy Reviews 96:156–66. doi:10.1016/J.RSER.2018.07.045.
  • Loulou, R., E. Wright, G. Giannakidis, and K. Noble. 2016. Documentation for the TIMES model PART I. http://www.iea-etsap.org/web/Documentation.asp.
  • Lucena, A. F. P., L. Clarke, R. Schaeffer, A. Szklo, P. R. R. Rochedo, L. P. P. Nogueira, K. Daenzer, A. Gurgel, A. Kitous, and T. Kober. 2016. Climate policy scenarios in Brazil: A multi-model comparison for energy. Energy Economics 56:564–74. doi:10.1016/j.eneco.2015.02.005.
  • Mabon, L., J. Kita, H. Onchi, M. Kawabe, T. Katano, H. Kohno, and Y. C. Huang. 2020. What natural and social scientists need from each other for effective marine environmental assessment: Insights from collaborative research on the Tomakomai CCS demonstration project. Marine Pollution Bulletin 159:111520. doi:10.1016/J.MARPOLBUL.2020.111520.
  • Mabon, L., J. Kita, and Z. Xue. 2017. Challenges for social impact assessment in coastal regions: A case study of the Tomakomai CCS demonstration project. Marine Policy 83:243–51. doi:10.1016/J.MARPOL.2017.06.015.
  • Makuch, Z., S. Georgieva, and B. Oraee-Mirzamani. 2020. Innovative Regulatory and Financial Parameters for Advancing Carbon Capture and Storage Technologies on JSTOR. Fordham Environmental Law Review 32 (1):1–45. https://www.jstor.org/stable/26984191.
  • Ma, J., L. Li, H. Wang, Y. Du, J. Ma, X. Zhang, and Z. Wang. 2022. Carbon capture and storage: History and the road ahead. Engineering 14:33–43. doi:10.1016/J.ENG.2021.11.024.
  • Martelli, E., M. Freschini, and M. Zatti. 2020. Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming. Applied Energy 267:115089. doi:10.1016/J.APENERGY.2020.115089.
  • Meckel, T. A., Y. E. Feng, R. H. Treviño, and D. Sava. 2019. High-resolution 3D marine seismic acquisition in the overburden at the Tomakomai CO2 storage project, offshore Hokkaido, Japan. International Journal of Greenhouse Gas Control 88:124–33. doi:10.1016/j.ijggc.2019.05.034.
  • METI. 2019. Japan’s Energy 2019 10 Questions for Understanding the Current Energy Situation. https://www.enecho.meti.go.jp/en/category/brochures/
  • METI. 2020. Report on large-scale CCS demonstration project compiled. https://www.meti.go.jp/english/press/2020/0515_004.html
  • METI. n.d. 2019 – Understanding the Current Energy Situation in Japan (Part 1)/Special Contents -Energy Japan-/agency for Natural Resources and Energy. Retrieved April 12, 2023, from https://www.enecho.meti.go.jp/en/category/special/article/energyissue2019_01.html
  • Middleton, R. S., and S. Yaw. 2018. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO2. International Journal of Greenhouse Gas Control 70:1–11. doi:10.1016/J.IJGGC.2017.12.011.
  • Ministry of the Environment Government of Japan. 2016. Statement by Kouichi Yamamoto, minister of the environment of Japan, at COP 22. https://www.env.go.jp/en/earth/cc/161116.html.
  • Ministry of the Environment, Japan Greenhouse Gas Inventory Office of Japan (GIO), CGER, NIES. 2019. National greenhouse gas inventory report of JAPAN 2019. https://www.cger.nies.go.jp/publications/report/i144/i144.pdf
  • Mintz-Woo, K., F. Dennig, H. Liu, and T. Schinko. 2021. Carbon pricing and COVID-19. Climate Policy 21 (10):1272–80. doi:10.1080/14693062.2020.1831432.
  • Mito-Adachi, S., and Z. Xue. 2021. Use of existing wells for a geochemical assessment of groundwater near a CCS site: A case study in Japan. SSRN Electronic Journal. doi:10.2139/SSRN.3812830.
  • MOFA Japan. 2018. Japan’s leading companies in climate change measures 1. https://www.mofa.go.jp/ic/ch/page25e_000147.html.
  • Murugesan, M., L. Reedman, T. S. Brinsmead, W. Rifkin, J. Gordon, and M. Megharaj. 2023. Modelling least-cost technology pathways to decarbonise the New South Wales energy system by 2050. Renewable and Sustainable Energy Transition 3:100041. doi:10.1016/J.RSET.2022.100041.
  • Nagatomo, Y., A. Ozawa, Y. Kudoh, and H. Hondo. 2021. Impacts of employment in power generation on renewable-based energy systems in Japan— analysis using an energy system model. Energy 226:120350. doi:10.1016/j.energy.2021.120350.
  • Naims, H. 2020. Economic aspirations connected to innovations in carbon capture and utilization value chains. Journal of Industrial Ecology 24 (5):1126–39. doi:10.1111/jiec.13003.
  • Neves, A., R. Godina, S. G. Azevedo, and J. C. O. Matias. 2020. A comprehensive review of industrial symbiosis. Journal of Cleaner Production 247:119113. doi:10.1016/j.jclepro.2019.119113.
  • Nikas, A., V. Stavrakas, A. Arsenopoulos, H. Doukas, M. Antosiewicz, J. Witajewski-Baltvilks, and A. Flamos. 2020. Barriers to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal Transitions 35:383–99. doi:10.1016/j.eist.2018.12.004.
  • Niu, T., X. Yao, S. Shao, D. Li, and W. Wang. 2018. Environmental tax shocks and carbon emissions: An estimated DSGE model. Structural Change and Economic Dynamics 47:9–17. doi:10.1016/j.strueco.2018.06.005.
  • Nižetić, S., A. M. Papadopoulos, G. M. Tina, and M. Rosa-Clot. 2017. Hybrid energy scenarios for residential applications based on the heat pump split air-conditioning units for operation in the Mediterranean climate conditions. Energy and Buildings 140:110–20. doi:10.1016/j.enbuild.2017.01.064.
  • Ojha, V. P., S. Pohit, and J. Ghosh. 2020. Recycling carbon tax for inclusive green growth: A CGE analysis of India. Energy Policy 144:111708. doi:10.1016/J.ENPOL.2020.111708.
  • Ouyang, X., and B. Lin. 2017. Carbon dioxide (CO2) emissions during urbanization: A comparative study between China and Japan. Journal of Cleaner Production 143:356–68. doi:10.1016/j.jclepro.2016.12.102.
  • Ozawa, A., Y. Kudoh, A. Murata, T. Honda, I. Saita, and H. Takagi. 2018. Hydrogen in low-carbon energy systems in Japan by 2050: The uncertainties of technology development and implementation. International Journal of Hydrogen Energy 43 (39):18083–94. doi:10.1016/j.ijhydene.2018.08.098.
  • Pambudi, N. A., K. Itaoka, A. Kurosawa, and N. Yamakawa. 2017. Impact of hydrogen fuel for CO 2 emission reduction in power generation sector in Japan. Energy Procedia 105:3075–82. doi:10.1016/j.egypro.2017.03.642.
  • Patricio, J., A. Angelis-Dimakis, A. Castillo-Castillo, Y. Kalmykova, and L. Rosado. 2017. Region prioritization for the development of carbon capture and utilization technologies. Journal of CO2 Utilization 17:50–59. doi:10.1016/j.jcou.2016.10.002.
  • Pehlivan, O., and A. Demirbas. 2007. Energy economy, energy policy, and energy/carbon taxes of Turkey. Energy Sources, Part B: Economics, Planning, & Policy 3 (1):26–40. doi:10.1080/15567240600814862.
  • Ravikumar, D., G. Keoleian, and S. Miller. 2020. The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production. Applied Energy 279:115770. doi:10.1016/j.apenergy.2020.115770.
  • Ryzhkov, A., T. Bogatova, and S. Gordeev. 2018. Technological solutions for an advanced IGCC plant. Fuel 214:63–72. doi:10.1016/j.fuel.2017.10.099.
  • Saito, A., K. Itaoka, and M. Akai. 2019. Those who care about CCS—results from a Japanese survey on public understanding of CCS-. International Journal of Greenhouse Gas Control 84:121–30. doi:10.1016/J.IJGGC.2019.02.014.
  • Saito, H., M. Tsuchiya, and D. Tanase. 2016. Natural earthquake and micro-seismic monitoring in Tomakomai CCS demonstration test. Public Interest Incorporated Association Geophysical Exploration Society Academic Lecture Proceedings = Proceedings of the SEGJ Conference, 135, 178–81. https://cir.nii.ac.jp/crid/1520853834168010880
  • Sarkodie, S. A., E. B. Ntiamoah, and D. Li. 2019. Panel heterogeneous distribution analysis of trade and modernized agriculture on CO 2 emissions: The role of renewable and fossil fuel energy consumption. Natural Resources Forum 43 (3):135–53. doi:10.1111/1477-8947.12183.
  • Sasaki, T., and Y. Sawada. 2021. Capture and compression process of the Tomakomai ccs demonstration project. SSRN Electronic Journal. doi:10.2139/SSRN.3815378.
  • Sawada, Y., J. Tanaka, C. Suzuki, D. Tanase, and Y. Tanaka. 2018. Tomakomai CCS demonstration project of Japan, CO2 injection in progress. Energy Procedia 154:3–8. doi:10.1016/J.EGYPRO.2018.11.002.
  • Sawada, Y., J. Tanaka, D. Tanase, T. Sasaki, and C. Suzuki. 2021a. Overall review of tomakomai CCS demonstration project ~Target of 300,000 tonnes CO2 injection achieved. SSRN Electronic Journal. doi:10.2139/SSRN.3812038.
  • Sawada, Y., J. Tanaka, D. Tanase, T. Sasaki, and C. Suzuki. 2021b. Tomakomai ccs demonstration project-achievements and future outlook. TCCS–11. CO2 capture, transport and storage. Trondheim 22nd–23rd June 2021 Short Papers from the 11th International Trondheim CCS Conference, Trondheim, Norway, June 21–23.
  • Shirmohammadi, R., A. Aslani, and R. Ghasempour. 2020. Challenges of carbon capture technologies deployment in developing countries. Sustainable Energy Technologies and Assessments 42:100837. doi:10.1016/j.seta.2020.100837.
  • Soeder, D. J. 2021. Fossil Fuels and Climate Change. In Fracking and the environment, 155–85. Springer International Publishing. doi:10.1007/978-3-030-59121-2_9.
  • Subramanian, A., T. Gundersen, and T. A. Adams. 2018. Modeling and simulation of energy systems: A review. Processes 6 (12):238. doi:10.3390/PR6120238.
  • Suzuki, H., K. Sasaki, and Y. Sugai. 2013. An evaluation study on CCS System against geological uncertainty and troubles. Procedia Earth and Planetary Science 6:219–25. doi:10.1016/j.proeps.2013.01.030.
  • Suzuki, C., J. Tanaka, and M. Fuji. 2021. Public engagement activities of the Tomakomai CCS demonstration project. SSRN Electronic Journal. doi:10.2139/SSRN.3811978.
  • Tanaka, Y., M. Abe, Y. Sawada, D. Tanase, T. Ito, and T. Kasukawa. 2014. Tomakomai CCS Demonstration Project in Japan, 2014 Update. Energy Procedia 63:6111–19. doi:10.1016/j.egypro.2014.11.643.
  • Tanaka, Y., Y. Sawada, D. Tanase, J. Tanaka, S. Shiomi, and T. Kasukawa. 2017. Tomakomai CCS demonstration project of Japan, CO2 injection in process. Energy Procedia 114:5836–46. doi:10.1016/J.EGYPRO.2017.03.1721.
  • Tanaka, Y., and A. Takahashi. 2021. Geophysical technologies and geological sequestration for carbon neutral transition. Global Meeting Abstracts 232–35. doi:10.1190/ICEG2021-060.1.
  • Tanase, D., and J. Tanaka. 2021a. Progress of CO2 injection and monitoring of the Tomakomai CCS demonstration project. SSRN Electronic Journal. doi:10.2139/SSRN.3817073.
  • Tanase, D., and J. Tanaka. 2021b. Progress of CO2 injection and monitoring of the Tomakomai CCS demonstration project. SSRN Electronic Journal. doi:10.2139/SSRN.3817073.
  • Thonig, R., P. Del Río, C. Kiefer, L. Lázaro Touza, G. Escribano, Y. Lechón, L. Späth, I. Wolf, and J. Lilliestam. 2021. Does ideology influence the ambition level of climate and renewable energy policy? Insights from four European countries. Energy Sources, Part B: Economics, Planning, & Policy 16 (1):4–22. doi:10.1080/15567249.2020.1811806.
  • Tsai, W. H. 2020. Carbon emission reduction—carbon tax, carbon trading, and carbon offset. Energies 13 (22):6128. doi:10.3390/EN13226128.
  • van der Loos, H. Z. A., S. O. Negro, and M. P. Hekkert. 2020. Low-carbon lock-in? Exploring transformative innovation policy and offshore wind energy pathways in the Netherlands. Energy Research & Social Science 69:101640. doi:10.1016/J.ERSS.2020.101640.
  • van Ruijven, B. J., D. P. van Vuuren, W. Boskaljon, M. L. Neelis, D. Saygin, and M. K. Patel. 2016. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling 112:15–36. doi:10.1016/j.resconrec.2016.04.016.
  • Waite, M., E. Cohen, H. Torbey, M. Piccirilli, Y. Tian, and V. Modi. 2017. Global trends in urban electricity demands for cooling and heating. Energy 127:786–802. doi:10.1016/j.energy.2017.03.095.
  • Wakiyama, T., M. Lenzen, A. Geschke, R. Bamba, and K. Nansai. 2020. A flexible multiregional input–output database for city-level sustainability footprint analysis in Japan. Resources, Conservation and Recycling 154:104588. doi:10.1016/j.resconrec.2019.104588.
  • Wang-Helmreich, H., and N. Kreibich. 2019. The potential impacts of a domestic offset component in a carbon tax on mitigation of national emissions. Renewable and Sustainable Energy Reviews 101:453–60. doi:10.1016/j.rser.2018.11.026.
  • Wang, B., Z. Yang, J. Xuan, and K. Jiao. 2020. Crises and opportunities in terms of energy and AI technologies during the COVID-19 pandemic. Energy and AI 1:100013. doi:10.1016/j.egyai.2020.100013.
  • Wang, X., and H. Zhang. 2018. Optimal design of carbon tax to stimulate CCS investment in China’s coal-fired power plants: A real options analysis. Greenhouse Gases: Science and Technology 8 (5):863–75. doi:10.1002/GHG.1814.
  • Webb, R. M., and M. B. Gerrard. 2019. Overcoming impediments to offshore CO2 storage: Legal issues in the United States and Canada. Environmental Law Reporter News & Analysis 49. https://heinonline.org/HOL/Page?handle=hein.journals/elrna49&id=662&div=&collection=.
  • Wei, N., X. Li, R. T. Dahowski, C. L. Davidson, S. Liu, and Y. Zha. 2015. Economic evaluation on CO2-EOR of onshore oil fields in China. International Journal of Greenhouse Gas Control 37:170–81. doi:10.1016/j.ijggc.2015.01.014.
  • Wei, N., X. Li, S. Liu, R. T. Dahowski, and C. L. Davidson. 2014. Early opportunities of CO2 geological storage deployment in coal chemical industry in China. Energy Procedia 63:7307–14. doi:10.1016/j.egypro.2014.11.767.
  • Wennersten, R., Q. Sun, and H. Li. 2015. The future potential for carbon capture and storage in climate change mitigation – an overview from perspectives of technology, economy and risk. Journal of Cleaner Production 103:724–36. doi:10.1016/j.jclepro.2014.09.023.
  • Wilberforce, T., A. G. Olabi, E. T. Sayed, K. Elsaid, and M. A. Abdelkareem. 2021. Progress in carbon capture technologies. Science of the Total Environment 761:143203. doi:10.1016/j.scitotenv.2020.143203.
  • Xin-Gang, Z., W. Ling, and Z. Ying. 2020. How to achieve incentive regulation under renewable portfolio standards and carbon tax policy? A China’s power market perspective. Energy Policy 143:111576. doi:10.1016/J.ENPOL.2020.111576.
  • Yanagi, K., and A. Nakamura. 2020. Towards a low/zero carbon society for the Asia-Pacific region: Policy and legal development for Carbon Capture and Storage (CCS) in Japan. In Sustainability and Law, 585–605. Springer International Publishing. doi:10.1007/978-3-030-42630-9_29.
  • Yan, Y., M. Sun, and Z. Guo. 2022. How do carbon cap-and-trade mechanisms and renewable portfolio standards affect renewable energy investment? Energy Policy 165:112938. doi:10.1016/J.ENPOL.2022.112938.
  • Yao, X., Y. Fan, Y. Xu, X. Zhang, L. Zhu, and L. Feng. 2019. Is it worth to invest? -an evaluation of CTL-CCS project in China based on real options. Energy 182:920–31. doi:10.1016/J.ENERGY.2019.06.100.
  • Yao, X., P. Zhong, X. Zhang, and L. Zhu. 2018. Business model design for the carbon capture utilization and storage (CCUS) project in China. Energy Policy 121:519–33. doi:10.1016/j.enpol.2018.06.019.
  • Yue, X., J. P. Deane, B. O’Gallachoir, and F. Rogan. 2020. Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles. Applied Energy 276:115456. doi:10.1016/J.APENERGY.2020.115456.
  • Yu, S., Q. Gao, J. Yang, and G. Feng. 2020. Introduction to the MARKAL energy modeling method for regional public institution energy planning—the Liaoning area. Environmental Science and Engineering 589–97. doi:10.1007/978-981-13-9528-4_60.
  • Zeppini, P., and J. C. J. M. van den Bergh. 2020. Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model. Energy Policy 136:110907. doi:10.1016/j.enpol.2019.110907.
  • Zhang, G., P. Cheng, H. Sun, Y. Shi, G. Zhang, and A. Kadiane. 2021. Carbon reduction decisions under progressive carbon tax regulations: A new dual-channel supply chain network equilibrium model. Sustainable Production and Consumption 27:1077–92. doi:10.1016/j.spc.2021.02.029.
  • Zhang, Z., and D. Huisingh. 2017. Carbon dioxide storage schemes: Technology, assessment and deployment. Journal of Cleaner Production 142:1055–64. doi:10.1016/J.JCLEPRO.2016.06.199.
  • Zhang, S., Y. Zhuang, L. Liu, L. Zhang, and J. Du. 2019. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty. Renewable and Sustainable Energy Reviews 113:109280. doi:10.1016/J.RSER.2019.109280.
  • Zhao, X., J. Yao, C. Sun, and W. Pan. 2019. Impacts of carbon tax and tradable permits on wind power investment in China. Renewable Energy 135:1386–99. doi:10.1016/J.RENENE.2018.09.068.
  • Zhou, Y., F. Hu, and Z. Zhou. 2018. Pricing decisions and social welfare in a supply chain with multiple competing retailers and carbon tax policy. Journal of Cleaner Production 190:752–77. doi:10.1016/j.jclepro.2018.04.162.
  • Zhu, N., Y. Bu, M. Jin, and N. Mbroh. 2020. Green financial behavior and green development strategy of Chinese power companies in the context of carbon tax. Journal of Cleaner Production 245:118908. doi:10.1016/J.JCLEPRO.2019.118908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.