64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of CBAM on carbon emission reduction in global steel foreign trade: projections based on the embodied carbon emission intensity of major countries

, , &

References

  • Ang, B. W. 2005. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 33 (7):867–20. doi:10.1016/j.enpol.2003.10.010.
  • Antimiani, A., V. Costantini, O. Kuik, and E. Paglialunga. 2016. Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments. Ecological Economics 128:246–59. doi:10.1016/j.ecolecon.2016.05.003.
  • Balistreri, E. J., D. T. Kaffine, and H. Yonezawa. 2019. Optimal environmental border adjustments under the general agreement on tariffs and trade. Environmental & Resource Economics 74 (3):1037–75. doi:10.1007/s10640-019-00359-2.
  • Bank, W. 2021. State and trends of carbon pricing 2021 (978-1-4648-1728-1). Washington, DC. https://documents.worldbank.org/en/publication/documents-reports/documentdetail/771941622009013802/state-and-trends-of-carbon-pricing-2021.
  • Bellora, C., and L. Fontagné. 2023. EU in search of a carbon border adjustment mechanism. Energy Economics 123:106673. doi:10.1016/j.eneco.2023.106673.
  • Böhringer, C., J. C. Carbone, and T. F. Rutherford. 2012. Unilateral climate policy design: Efficiency and equity implications of alternative instruments to reduce carbon leakage. Energy Economics 34:S208–17. doi:10.1016/j.eneco.2012.09.011.
  • Böning, T., V. Di Nino, and T. Folger. 2023. Benefits and costs of the ETS in the EU, a lesson learned for the CBAM design. Frankfurt: European Central Bank (ECB).
  • Chen, Y., J. Jiang, L. Wang, and R. Wang. 2023. Impact assessment of energy sanctions in geo-conflict: Russian–Ukrainian war. Energy Reports 9:3082–95. doi:10.1016/j.egyr.2023.01.124.
  • Clora, F., W. Yu, and E. Corong. 2023. Alternative carbon border adjustment mechanisms in the European Union and international responses: Aggregate and within-coalition results. Energy Policy 174:113454. doi:10.1016/j.enpol.2023.113454.
  • Commission, E. (2022). European green deal: Agreement reached on the Carbon Border Adjustment Mechanism (CBAM). Accessed from https://www.consilium.europa.eu/.
  • Crowley-Vigneau, A., Y. Kalyuzhnova, and N. Ketenci. 2023. What motivates the ‘green’ transition: Russian and European perspectives. Resources Policy 81:103128. doi:10.1016/j.resourpol.2022.103128.
  • Eicke, L., S. Weko, M. Apergi, and A. Marian. 2021. Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism. Energy Research & Social Science 80:102240. doi:10.1016/j.erss.2021.102240.
  • EPE. (2022). BEN Relatório Síntese 2022. Accessed from https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/.
  • Fang, Y., Y. Yu, Y. Shi, and J. Liu. 2020. The effect of carbon tariffs on global emission control: A global supply chain model. Transportation Research Part E: Logistics & Transportation Review 133:101818. doi:10.1016/j.tre.2019.11.012.
  • IEA. (2020). Iron and Steel technology roadmap. Accessed from https://www.iea.org/reports/iron-and-steel-technology-roadmap.
  • Latif, S. D., M. Almalayih, A. Yafouz, A. N. Ahmed, N. A. Zaini, D. Irwan, N. AlDahoul, M. Sherif, and A. El-Shafie. 2023. Prediction of atmospheric carbon monoxide concentration utilizing different machine learning algorithms: A case study in Kuala Lumpur, Malaysia. Environmental Technology & Innovation 32:103387. doi:10.1016/j.eti.2023.103387.
  • Lazaro, L. L. B., R. S. Soares, C. Bermann, F. M. A. Collaço, L. L. Giatti, and S. Abram. 2022. Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime? Energy Research & Social Science 85:102404. doi:10.1016/j.erss.2021.102404.
  • Li, G., Z. Yang, and H. Yang. 2023. A new hybrid short-term carbon emissions prediction model for aviation industry in China. Alexandria Engineering Journal 68:93–110. doi:10.1016/j.aej.2022.12.059.
  • Li, Q., B. Wen, G. Wang, J. Cheng, W. Zhong, T. Dai, L. Liang, and Z. Han. 2018. Study on calculation of carbon emission factors and embodied carbon emissions of iron-containing commodities in international trade of China. Journal of Cleaner Production 191:119–26. doi:10.1016/j.jclepro.2018.04.224.
  • Li, W., X. Liu, and C. Lu. 2023. Analysis of China’s steel response ways to EU CBAM policy based on embodied carbon intensity prediction. Energy 282:282. doi:10.1016/j.energy.2023.128812.
  • Li, W., S. Zhang, and C. Lu. 2022. Research on the driving factors and carbon emission reduction pathways of China’s iron and steel industry under the vision of carbon neutrality. Journal of Cleaner Production 357:131990. doi:10.1016/j.jclepro.2022.131990.
  • Long, Y., Y. Yoshida, Q. Liu, H. Zhang, S. Wang, and K. Fang. 2020. Comparison of city-level carbon footprint evaluation by applying single- and multi-regional input-output tables. Journal of Environmental Management 260:110108. doi:10.1016/j.jenvman.2020.110108.
  • Mallett, A., and P. Pal. 2022. Green transformation in the iron and steel industry in India: Rethinking patterns of innovation. Energy Strategy Reviews 44:100968. doi:10.1016/j.esr.2022.100968
  • Mörsdorf, G. 2022. A simple fix for carbon leakage? Assessing the environmental effectiveness of the EU carbon border adjustment. Energy Policy 161:161. doi:10.1016/j.enpol.2021.112596.
  • Okorie, D. I., and P. K. Wesseh. 2023. Climate agreements and carbon intensity: Towards increased production efficiency and technical progress? Structural Change and Economic Dynamics 66:300–13. doi:10.1016/j.strueco.2023.05.012.
  • Otsuka, A. 2023. Industrial electricity consumption efficiency and energy policy in Japan. Utilities Policy 81:101519. doi:10.1016/j.jup.2023.101519
  • Overland, I., and R. Sabyrbekov. 2022. Know your opponent: Which countries might fight the European carbon border adjustment mechanism? Energy Policy 169:169. doi:10.1016/j.enpol.2022.113175.
  • P L c, B. (2022). bp world energy statistics yearbook (2022 Edition). Accessed from https://www.bp.com/.
  • Prabhu, V. S., and K. Mukhopadhyay. 2023. Macro-economic impacts of renewable energy transition in India: An input-output LCA approach. Energy for Sustainable Development 74:396–414. doi:10.1016/j.esd.2023.04.006
  • Rahman, M. M., N. Sultana, and E. Velayutham. 2022. Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies. Renewable Energy 184:252–65. doi:10.1016/j.renene.2021.11.068.
  • Ren, Y., G. Liu, and L. Shi. 2023. The EU carbon border adjustment mechanism will exacerbate the economic-carbon inequality in the plastic trade. Journal of Environmental Management 332:117302. doi:10.1016/j.jenvman.2023.117302.
  • Rossetto, D. 2023a. The carbon border adjustment mechanism: What does it mean for steel recycling? Sustainable Horizons 5:100048. doi:10.1016/j.horiz.2023.100048.
  • Rossetto, D. 2023b. The long-term feasibility of border carbon mechanisms: An analysis of measures proposed in the European Union and the United States and the steel production sector. Sustainable Horizons 6:6. doi:10.1016/j.horiz.2023.100053.
  • Schinko, T., B. Bednar-Friedl, K. W. Steininger, and W. D. Grossmann. 2014. Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment. Energy Policy 67:818–31. doi:10.1016/j.enpol.2013.11.077.
  • Silitonga, A. S., H. H. Masjuki, H. C. Ong, A. H. Sebayang, S. Dharma, F. Kusumo, and B. Sugiyanto. 2018. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 159:1075–87. doi:10.1016/j.energy.2018.06.202.
  • Sun, W., and C. Ren. 2021. The impact of energy consumption structure on China’s carbon emissions: Taking the Shannon–Wiener index as a new indicator. Energy Reports 7:2605–14. doi:10.1016/j.egyr.2021.04.061.
  • Sun, X., Z. Mi, L. Cheng, D. M. Coffman, and Y. Liu. 2023. The carbon border adjustment mechanism is inefficient in addressing carbon leakage and results in unfair welfare losses. Fundamental Research. doi:10.1016/j.fmre.2023.02.026.
  • Tarr, D. G., D. E. Kuznetsov, I. Overland, and R. Vakulchuk. 2023. Why carbon border adjustment mechanisms will not save the planet but a climate club and subsidies for transformative green technologies may. Energy Economics 122:122. doi:10.1016/j.eneco.2023.106695.
  • Trinh, V. Q., A. T. Q. Nguyen, and X. V. Vo. 2022. Export quality upgrading and environmental sustainability: Evidence from the East Asia and Pacific Region. Research in International Business and Finance 60:60. doi:10.1016/j.ribaf.2022.101632.
  • Wang, C., L. Zhao, G. N. Papageorgiou, Y. Qian, J. Xue, and D. Li. 2023. Embodied carbon emissions generated by international trade of China’s light industry sector based on global supply chains perspective. Energy Strategy Reviews 47:101095. doi:10.1016/j.esr.2023.101095.
  • Wang, Q., and X. Han. 2021. Is decoupling embodied carbon emissions from economic output in sino-US trade possible? Technological Forecasting and Social Change 169:120805. doi:10.1016/j.techfore.2021.120805.
  • Wang, Y., S. Xiong, and X. Ma. 2022. Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added. Ecological Economics 195:107398. doi:10.1016/j.ecolecon.2022.107398.
  • Werner, D., and L. L. B. Lazaro. 2023. The policy dimension of energy transition: The Brazilian case in promoting renewable energies (2000–2022). Energy Policy 175:113480. doi:10.1016/j.enpol.2023.113480.
  • World Steel Association (2022). World Steel in Figus 2022. Accessed from https://worldsteel.org/steel-topics/statistics/world-steel-in-figus-2022.
  • Xuan, Y., and Q. Yue. 2016. Forecast of steel demand and the availability of depreciated steel scrap in China. Resources, Conservation and Recycling 109:1–12. doi:10.1016/j.resconrec.2016.02.003.
  • Yang, B., X. Wu, J. Hao, D. Xu, T. Liu, and Q. Xie. 2023. Estimation of wood failure percentage under shear stress in bamboo-wood composite bonded by adhesive using a deep learning and entropy weight method. Industrial Crops and Products 197:116617. doi:10.1016/j.indcrop.2023.116617.
  • Yang, C., and X. Yan. 2023. Impact of carbon tariffs on price competitiveness in the era of global value chain. Applied Energy 336:120805. doi:10.1016/j.apenergy.2023.120805.
  • Yang, Y., W. Xu, Y. Wang, J. Shen, Y. Wang, Z. Geng, Q. Wang, and T. Zhu. 2022. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China. Chemical Engineering Journal 450:138438. doi:10.1016/j.cej.2022.138438.
  • Yu, X., and C. Tan. 2022. China’s pathway to carbon neutrality for the iron and steel industry. Global Environmental Change 76:102574. doi:10.1016/j.gloenvcha.2022.102574
  • Zhang, X.-H., Q.-X. Zhu, Y.-L. He, and Y. Xu. 2018. A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry. Energy 162:593–602. doi:10.1016/j.energy.2018.08.069.
  • Zhao, B., and M. Yarime. 2022. The impacts of carbon tariffs on international trade flows and carbon emissions: An analysis integrating trade elasticities with an application to US-China trade. Energy Economics 115:115. doi:10.1016/j.eneco.2022.106337.
  • Zhong, J., and J. Pei. 2022. Beggar thy neighbor? On the competitiveness and welfare impacts of the EU’s proposed carbon border adjustment mechanism. Energy Policy 162:162. doi:10.1016/j.enpol.2022.112802.
  • Zhong, S., T. Goh, and B. Su. 2022. Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies. Energy Economics 114:106313. doi:10.1016/j.eneco.2022.106313.
  • Zhu, W., B. Huang, J. Zhao, X. Chen, and C. Sun. 2023. Impacts on the embodied carbon emissions in China’s building sector and its related energy-intensive industries from energy-saving technologies perspective: A dynamic CGE analysis. Energy and Buildings 287:112926. doi:10.1016/j.enbuild.2023.112926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.