3,959
Views
68
CrossRef citations to date
0
Altmetric
Reviews

Evaluating Broader Impacts of Nanoscale Thermal Transport Research

, , , , , , , , , , , , , , & show all
Pages 127-165 | Received 16 Nov 2014, Accepted 13 Mar 2015, Published online: 05 Jun 2015

REFERENCES

  • I. Newton, Scala Graduum Caloris. Calorum Descriptiones & Signa, Philosophical Transactions, Vol., pp. 824–829, 1701.
  • J. Fourier, Théorie Analytique de la Chaleur [The Analytic Theory of Heat], Firmin Didot Père et Fils, Paris, 1822.
  • M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, Verhandlungen der Deutschen Physikalischen Gesellschaft [On the Theory of the Law of Energy Distribution in the Continuous Spectrum], Vol. 2, pp. 237, 1900.
  • G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, Vol. 49, pp. 57–61, 1982.
  • G. Binnig, C.F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, Vol. 56, pp. 930–933, 1986.
  • D.G. Cahill, Thermal-Conductivity Measurement from 30-K to 750-K—The 3-Omega Method, Review of Scientific Instruments, Vol. 61, pp. 802–808, 1990.
  • A. Majumdar, J.P. Carrejo, and J. Lai, Thermal Imaging Using the Atomic Force Microscope, Applied Physics Letters, Vol. 62, pp. 2501–2503, 1993.
  • P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, Vol. 8721, p. 215502, 2001.
  • R.M. Costescu, M.A. Wall, and D.G. Cahill, Thermal Conductance of Epitaxial Interfaces, Physical Review B, Vol. 67, p. 054302, 2003.
  • S.T. Huxtable, D.G. Cahill, S. Shenogin, L.P. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski, Interfacial Heat Flow in Carbon Nanotube Suspensions, Nature Materials, Vol. 2, pp. 731–734, 2003.
  • A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, Vol. 8, pp. 902–907, 2008.
  • D.A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles, Applied Physics Letters, Vol. 91, pp. 231922 ‐3, 2007.
  • C. Dames, P. Reddy, Y. Nagasaka, and H. Daiguji, Report on the 8th U.S.–Japan Joint Seminar on Nanoscale Transport Phenomena—Science and Engineering, Nanoscale and Microscale Thermophysical Engineering, this issue, 2015.
  • L. Shi, Thermal and Thermoelectric Transport in Nanostructures and Low-Dimensional Systems, Nanoscale and Microscale Thermophysical Engineering, Vol. 16, pp. 79–116, 2012.
  • E.S. Toberer, L.L. Baranowski, and C. Dames, Advances in Thermal Conductivity, Annual Review of Materials Research, Vol. 42, pp. 179–209, 2012.
  • D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Nanoscale Thermal Transport. II. 2003–2012, Applied Physics Reviews, Vol. 1, p. 011305, 2014.
  • G. Chen, Probing Nanoscale Heat Transfer Phenomena, Annual Review of Heat Transfer, Vol. 16, pp. 1–6, 2013.
  • C. Dames, Measuring the Thermal Conductivity of Thin Films Using 3 Omega and Related Electrothermal Methods, in Annual Review of Heat Transfer. vol. 16, pp. 7–49, G. Chen, Ed., ed, 2013.
  • L. Shi, D.Y. Li, C.H. Yu, W.Y. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device, Journal of Heat Transfer, Vol. 125, pp. 881–888, 2003.
  • L. Lu, W. Yi, and D.L. Zhang, 3 Omega Method for Specific Heat and Thermal Conductivity Measurements, Review of Scientific Instruments, Vol. 72, pp. 2996–3003, 2001.
  • C. Dames, S. Chen, C.T. Harris, J.Y. Huang, Z.F. Ren, M.S. Dresselhaus, and G. Chen, A Hot-Wire Probe for Thermal Measurements of Nanowires and Nanotubes inside a Transmission Electron Microscope, Review of Scientific Instruments, Vol. 78, p. 104903, 2007.
  • M.T. Pettes and L. Shi, Thermal and Structural Characterizations of Individual SingleDoubleand Multi-Walled Carbon Nanotubes, Advanced Functional Materials, Vol. 19, pp. 3918–3925, 2009.
  • K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, and A. Majumdar, Fabrication of Microdevices with Integrated Nanowires for Investigating Low-Dimensional Phonon Transport, Nano Letters, Vol. 10, pp. 4341–4348, 2010.
  • Y.K. Koh and D.G. Cahill, Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys, Physical Review B (Condensed Matter and Materials Physics), Vol. 76, p. 075207 ‐5, 2007.
  • A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K.A. Nelson, and G. Chen, Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths, Physical Review Letters, Vol. 107, p. 095901, 2011.
  • K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance, Nature Communications, Vol. 4, pp. 1640, 2013.
  • J.A. Johnson, A.A. Maznev, J. Cuffe, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M.S. Torres, G. Chen, and K.A. Nelson, Direct Measurement of Room-Temperature Nondiffusive Thermal Transport over Micron Distances in a Silicon Membrane, Physical Review Letters, Vol. 110, p. 025901, 2013.
  • J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, and L. Shi, Two-Dimensional Phonon Transport in Supported Graphene, Science, Vol. 328, pp. 213–216, 2010.
  • W. Jang, Z. Chen, W. Bao, C.N. Lau, and C. Dames, Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite, Nano Letters, Vol. 10, pp. 3909–3913, 2010.
  • M.N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M.T. Bulsara, A.J. Schmidt, A.J. Minnich, S. Chen, M.S. Dresselhaus, Z.F. Ren, E.A. Fitzgerald, and G. Chen, Coherent Phonon Heat Conduction in Superlattices, Science, Vol. 338, pp. 936–939, 2012.
  • J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. Ramesh, and M.A. Zurbuchen, Crossover from Incoherent to Coherent Phonon Scattering in Epitaxial Oxide Superlattices, Nature Materials, Vol. 13, pp. 168–172, 2014.
  • C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals, Science, Vol. 315, pp. 351–353, 2007.
  • A. Majumdar, Scanning Thermal Microscopy, Annual Review of Materials Science, Vol. 29, pp. 505–585, 1999.
  • K. Kim, W. Jeong, W. Lee, and P. Reddy, Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry, ACS Nano, Vol. 6, pp. 4248–4257, 2012.
  • M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bahl, and B.B. Iversen, Avoided Crossing of Rattler Modes in Thermoelectric Materials, Nature Materials, Vol. 7, pp. 811–815, 2008.
  • M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H.C. Kapteyn, Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-ray Beams, Nature Materials, Vol. 9, pp. 26–30, 2010.
  • O. Delaire, J. Ma, K. Marty, A.F. May, M.A. McGuire, M.H. Du, D.J. Singh, A. Podlesnyak, G. Ehlers, M.D. Lumsden, and B.C. Sales, Giant Anharmonic Phonon Scattering in PbTe, Nature Materials, Vol. 10, pp. 614–619, 2011.
  • K. Esfarjani, G. Chen, and H.T. Stokes, Heat Transport in Silicon from First-Principles Calculations, Physical Review B, Vol. 84, p. 085204, 2011.
  • Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phonon Conduction in PbSe, PbTe, and PbTe_1-xSe_x from First-Principles Calculations, Physical Review B, Vol. 85, p. 184303, 2012.
  • L. Lindsay, D.A. Broido, and T.L. Reinecke, First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond?, Physical Review Letters, Vol. 111, p. 025901, 2013.
  • W. Zhang, T.S. Fisher, and N. Mingo, The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport, Numerical Heat Transfer Part B - Fundamentals, Vol. 51, pp. 333–349, 2007.
  • Z. Tian, K. Esfarjani, and G. Chen, Enhancing Phonon Transmission across a Si/Ge Interface by Atomic Roughness: First-Principles Study with the Green’s Function Method, Physical Review B, Vol. 86, p. 235304, 2012.
  • S. Maruyama, A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs, Physica B-Condensed Matter, Vol. 323, pp. 193–195, 2002.
  • P.K. Schelling, S.R. Phillpot, and P. Keblinski, Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation, Applied Physics Letters, Vol. 80, pp. 2484–2486, 2002.
  • J.E. Turney, E.S. Landry, A.J.H. McGaughey, and C.H. Amon, Predicting Phonon Properties and Thermal Conductivity from Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations, Physical Review B, Vol.79, p. 064301, 2009.
  • N. Zuckerman and J.R. Lukes, Acoustic Phonon Scattering from Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study, Physical Review B, Vol. 77, p. 094302, 2008.
  • A.J. Minnich, Determining Phonon Mean Free Paths from Observations of Quasiballistic Thermal Transport, Physical Review Letters, Vol. 109, p. 205901, 2012.
  • F. Yang and C. Dames, Mean Free Path Spectra as a Tool to Understand Thermal Conductivity in Bulk and Nanostructures, Physical Review B, Vol. 87, p. 035437, 2013.
  • Z. Chen, Z. Wei, Y. Chen, and C. Dames, Anisotropic Debye Model for the Thermal Boundary Conductance, Physical Review B, Vol. 87, p. 125426, 2013.
  • Z.Y. Wei, Y.F. Chen, and C. Dames, Negative Correlation between In-Plane Bonding Strength and Cross-Plane Thermal Conductivity in a Model Layered Material, Applied Physics Letters, Vol. 102, p. 011901, 2013.
  • N.A. Roberts and D.G. Walker, A Review of Thermal Rectification Observations and Models in Solid Materials, International Journal of Thermal Sciences, Vol. 50, pp. 648–662, 2011.
  • N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating Heat Flow with Electronic Analogs and Beyond, Reviews of Modern Physics, Vol. 84, pp. 1045–1066, 2012.
  • J.K. Yang, Y. Yang, S.W. Waltermire, X.X. Wu, H.T. Zhang, T. Gutu, Y.F. Jiang, Y.F. Chen, A.A. Zinn, R. Prasher, T.T. Xu, and D.Y. Li, Enhanced and Switchable Nanoscale Thermal Conduction Due to van der Waals Interfaces, Nature Nanotechnology, Vol. 7, pp. 91–95, 2012.
  • Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. Garay, and C. Dames, A Photon Thermal Diode, Nature Communications, Vol. 5, p. 5446, 2014.
  • J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill, and P.V. Braun, Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide, Nature Communications, Vol. 5, p. 4035, 2014.
  • C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi, Magnon Heat Transport in (Sr,Ca,La)14 Cu24 O41, Physical Review B, Vol. 64, p. 184305, 2001.
  • C. Hess, Heat Conduction in Low-Dimensional Quantum Magnets, The European Physical Journal Special Topics, Vol. 151, pp. 73–83, 2007.
  • C.M. Jaworski, J. Yang, S. Mack, D.D. Awschalom, J.P. Heremans, and R.C. Myers, Observation of the Spin-Seebeck Effect in a Ferromagnetic Semiconductor, Nature Materials, Vol. 9, pp. 898–903, 2010.
  • D.R. Birt, K. An, A. Weathers, L. Shi, M. Tsoi, and X. Li, Brillouin Light Scattering Spectra as Local Temperature Sensors for Thermal Magnons and Acoustic Phonons, Applied Physics Letters, Vol. 102, p. 082401, 2013.
  • G.T. Hohensee, R.B. Wilson, J.P. Feser, and D.G. Cahill, Magnon–Phonon Coupling in the Spin-Ladder Compound Ca9La5Cu24O41 Measured by Time-Domain Thermoreflectance, Physical Review B, Vol. 89, p. 024422, 2014.
  • P. Reddy, S.-Y. Jang, R.A. Segalman, and A. Majumdar, Thermoelectricity in Molecular Junctions, Science, Vol. 315, pp. 1568–1571, 2007.
  • Z.H. Wang, J.A. Carter, A. Lagutchev, Y.K. Koh, N.H. Seong, D.G. Cahill, and D.D. Dlott, Ultrafast Flash Thermal Conductance of Molecular Chains, Science, Vol. 317, pp. 787–790, 2007.
  • W. Lee, K. Kim, W. Jeong, L.A. Zotti, F. Pauly, J.C. Cuevas, and P. Reddy, Heat Dissipation in Atomic-Scale Junctions, Nature, Vol. 498, pp. 209–212, 2013.
  • E.Y. Lukianova-Hleb and D.O. Lapotko, Nano-Theranostics with Plasmonic Nanobubbles, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, p. 7300412, 2014.
  • S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G.N. Thalmann, C. Brandenberger, A. Bailey, and M. Frenz, Mechanisms of Nanoparticle-Mediated Photomechanical Cell Damage, Biomedical Optics Express, Vol. 3, pp. 435–446, 2012.
  • Y. Peles and E.N. Wang, Preface, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 195–196, 2014.
  • J.M. Wu and J. Zhao, A Review of Nanofluid Heat Transfer and Critical Heat Flux Enhancement—Research Gap to Engineering Application, Progress in Nuclear Energy, Vol. 66, pp. 13–24, 2013.
  • S. Bhavnani, V. Narayanan, W. Qu, M. Jensen, S. Kandlikar, J. Kim, and J. Thome, Boiling Augmentation with Micro/Nanostructured Surfaces: Current Status and Research Outlook, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 197–222, 2014.
  • S.C. Maroo and J.N. Chung, Heat Transfer Characteristics and Pressure Variation in a Nanoscale Evaporating Meniscus, International Journal of Heat and Mass Transfer, Vol. 53, pp. 3335–3345, 2010.
  • J.L. Plawsky, A.G. Fedorov, S.V. Garimella, H.B. Ma, S.C. Maroo, L. Chen, and Y. Nam, Nano- and Microstructures for Thin-Film Evaporation—A Review, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 251–269, 2014.
  • O. Neumann, A.S. Urban, J. Day, S. Lal, P. Nordlander, and N.J. Halas, Solar Vapor Generation Enabled by Nanoparticles, ACS Nano, Vol. 7, pp. 42–49, 2013.
  • R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids, Journal of Applied Physics, Vol. 113, p. 011301, 2013.
  • C. Gerardi, J. Buongiorno, L.W. Hu, and T. McKrell, Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena, Nanoscale Research Letters, Vol. 6, Article 232, pp. 17, 2011.
  • S.T. O’Connell and P.A. Thompson, Molecular Dynamics–Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flow, Physical Review E, Vol. 52, pp. R5792–R5795, 1995.
  • J. Liu, S.Y. Chen, X.B. Nie, and M.O. Robbins, A Continuum–Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows, Journal of Computational Physics, Vol. 227, pp. 279–291, 2007.
  • I.A. Cosden and J.R. Lukes, A Hybrid Atomistic–Continuum Model for Fluid Flow Using LAMMPS and OpenFOAM, Computer Physics Communications, Vol. 184, pp. 1958–1965, 2013.
  • R. Delgado-Buscalioni and G.D. Fabritiis, Embedding Molecular Dynamics within Fluctuating Hydrodynamics in Multiscale Simulations of Liquids, Physical Review E, Vol. 76, p. 036709, 2007.
  • N.K. Voulgarakis and J.W. Chu, Bridging Fluctuating Hydrodynamics and Molecular Dynamics Simulations of Fluids, Journal of Chemical Physics, Vol. 130, p. 134111, 2009.
  • R. Enright, N. Miljkovic, J.L. Alvarado, K. Kim, and J.W. Rose, Dropwise Condensation on Micro- and Nanostructured Surfaces, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 223–250, 2014.
  • J. Buongiorno, D.G. Cahill, C.H. Hidrovo, S. Moghaddam, A.J. Schmidt, and L. Shi, Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 270–287, 2014.
  • M. McCarthy, K. Gerasopoulos, S.C. Maroo, and A.J. Hart, Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, pp. 288–310, 2014.
  • A. Narayanaswamy, S. Shen, and G. Chen, Near-Field Radiative Heat Transfer between a Sphere and a Substrate, Physical Review B, Vol. 78, p. 115303, 2008.
  • S. Shen, A. Narayanaswamy, and G. Chen, Surface Phonon Polaritons Mediated Energy Transfer between Nanoscale Gaps, Nano Letters, Vol. 9, pp. 2909–2913, 2009.
  • E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.J. Greffet, Radiative Heat Transfer at the Nanoscale, Nature Photonics, Vol. 3, pp. 514–517, 2009.
  • A.C. Jones and M.B. Raschke, Thermal Infrared Near-Field Spectroscopy, Nano Letters, Vol. 12, pp. 1475–1481, 2012.
  • P.J. van Zwol, K. Joulain, P. Ben-Abdallah, and J. Chevrier, Phonon Polaritons Enhance Near-Field Thermal Transfer across the Phase Transition of VO(2), Physical Review B, Vol. 84, p. 161413, 2011.
  • P.J. van Zwol, K. Joulain, P. Ben Abdallah, J.J. Greffet, and J. Chevrier, Fast Nanoscale Heat-Flux Modulation with Phase-Change Materials, Physical Review B, Vol. 83, p. 201404, 2011.
  • C.R. Otey, W.T. Lau, and S.H. Fan, Thermal Rectification through Vacuum, Physical Review Letters, Vol. 104, p. 154301, 2010.
  • S. Basu and M. Francoeur, Near-Field Radiative Transfer Based Thermal Rectification Using Doped Silicon, Applied Physics Letters, Vol. 98, p. 113106, 2011.
  • S. Basu, Z.M. Zhang, and C.J. Fu, Review of Near-Field Thermal Radiation and Its Application to Energy Conversion, International Journal of Energy Research, Vol. 33, pp. 1203–1232, 2009.
  • D. Polder and M. Vanhove, Theory of Radiative Heat Transfer between Closely Spaced Bodies, Physical Review B, Vol. 4, pp. 3303–3313, 1971.
  • S.M. Rytov, Theory of Electric Fluctuations and Thermal Radiation, Electronics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command, U.S. Air Force, Bedford, MA, 1959.
  • K. Joulain, J.P. Mulet, F. Marquier, R. Carminati, and J.J. Greffet, Surface Electromagnetic Waves Thermally Excited: Radiative Heat Transfer, Coherence Properties and Casimir Forces Revisited in the Near Field, Surface Science Reports, Vol. 57, pp. 59–112, 2005.
  • S. Basu and Z.M. Zhang, Ultrasmall Penetration Depth in Nanoscale Thermal Radiation, Applied Physics Letters, Vol. 95, p. 133104 ‐6, 2009.
  • S.A. Biehs, P. Ben-Abdallah, F.S.S. Rosa, K. Joulain, and J.J. Greffet, Nanoscale Heat Flux between Nanoporous Materials, Optics Express, Vol. 19, pp. A1088–A1103, 2011.
  • G.A. Domoto, R.F. Boehm, and C.L. Tien, Experimental Investigation of Radiative Transfer between Metallic Surfaces at Cryogenic Temperatures, Journal of Heat Transfer, Vol. 92, pp. 412–416, 1970.
  • R.S. Ottens, V. Quetschke, S. Wise, A.A. Alemi, R. Lundock, G. Mueller, D.H. Reitze, D.B. Tanner, and B.F. Whiting, Near-Field Radiative Heat Transfer between Macroscopic Planar Surfaces, Physical Review Letters, Vol. 107, p. 014301, 2011.
  • C.M. Hargreaves, Anomalous Radiative Transfer between Closely-Spaced Bodies, Physics Letters, Vol. 30A, pp. 491–492, 1969.
  • J.B. Xu, K. Lauger, R. Moller, K. Dransfeld, and I.H. Wilson, Heat-Transfer between 2 Metallic Surfaces at Small Distances, Journal of Applied Physics, Vol. 76, pp. 7209–7216, 1994.
  • A. Kittel, W. Muller-Hirsch, J. Parisi, S.A. Biehs, D. Reddig, and M. Holthaus, Near-Field Heat Transfer in a Scanning Thermal Microscope, Physical Review Letters, Vol. 95, p. 224301, 2005.
  • Z. Zhang, X. Liu, and L. Wang, Near-Field Thermal Radiation: Recent Progress and Outlook, Nanoscale and Microscale Thermophysical Engineering, this issue, 2015.
  • M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, J. Ganping, Y.-T. Hsia, and M.F. Erden, Heat Assisted Magnetic Recording, Proceedings of the IEEE, Vol. 96, pp. 1810–1835, 2008.
  • T.W. McDaniel, Ultimate Limits to Thermally Assisted Magnetic Recording, Journal of Physics: Condensed Matter, Vol. 17, pp. R315, 2005.
  • D. Weller and A. Moser, Thermal Effect Limits in Ultrahigh-Density Magnetic Recording, IEEE Transactions on Magnetics, Vol. 35, pp. 4423–4439, 1999.
  • W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Heat-Assisted Magnetic Recording by a Near-Field Transducer with Efficient Optical Energy Transfer, Nature Photonics, Vol. 3, pp. 220–224, 2009.
  • D.G. Cahill, Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance, Review of Scientific Instruments, Vol. 75, pp. 5119–5122, 2004.
  • A.J. Schmidt, X. Chen, and G. Chen, Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance, Review of Scientific Instruments, Vol. 79, p. 114902, 2008.
  • A. Chernyshov, D. Treves, T. Le, F. Zong, A. Ajan, and R. Acharya, Measurement of FePt Thermal Properties Relevant to Heat-Assisted Magnetic Recording, Journal of Applied Physics, Vol. 115, p. 17B735, 2014.
  • I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam, J.T. Moon, and C.H. Chung, High Performance PRAM Cell Scalable to Sub-20nm Technology with Below 4F2 Cell Size, Extendable to DRAM Applications, presented at 2010 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 15–17 June, 2010.
  • J. Rice, Micron Announces Availability of Phase Change Memory for Mobile Devices, 2012. Available at: http://investors.micron.com/releasedetail.cfm?ReleaseID=692563. Last accessed 24 April 2015.
  • H.S.P. Wong, S. Raoux, K. SangBum, L. Jiale, J.P. Reifenberg, B. Rajendran, M. Asheghi, and K.E. Goodson, Phase Change Memory, Proceedings of the IEEE, Vol. 98, pp. 2201–2227, 2010.
  • G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R.S. Shenoy, Phase Change Memory Technology, Journal of Vacuum Science & Technology, Vol. B 28, pp. 223–262, 2010.
  • M. Wuttig and N. Yamada, Phase-Change Materials for Rewriteable Data Storage, Nature Materials, Vol. 6, pp. 824–832, 2007.
  • E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo, and J.-G. Yoon, Thermal Boundary Resistance at Ge2Sb2Te5/ZnS:SiO2 Interface, Applied Physics Letters, Vol. 76, pp. 3864–3866, 2000.
  • V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, Thermal Characterization and Analysis of Phase Change Random Access Memory, Journal of Applied Physics, Vol. 98, p. 013520, 2005.
  • H.-K. Lyeo, D.G. Cahill, B.-S. Lee, J.R. Abelson, M.-H. Kwon, K.-B. Kim, S.G. Bishop, and B.-k. Cheong, Thermal Conductivity of Phase-Change Material Ge2Sb2Te5, Applied Physics Letters, Vol. 89, p. 151904, 2006.
  • M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, Measurement of the Thermal Conductivity of Nanometer Scale Thin Films by Thermoreflectance Phenomenon, Microelectronic Engineering, Vol. 84, pp. 1792–1796, 2007.
  • J.P. Reifenberg, M.A. Panzer, S. Kim, A.M. Gibby, Y. Zhang, S. Wong, H.-S.P. Wong, E. Pop, and K.E. Goodson, Thickness and Stoichiometry Dependence of the Thermal Conductivity of GeSbTe Films, Applied Physics Letters, Vol. 91, p. 11904, 2007.
  • W.P. Risk, C.T. Rettner, and S. Raoux, In situ 3ω Techniques for Measuring Thermal Conductivity of Phase-Change Materials, Review of Scientific Instruments, Vol. 79, p. 026108, 2008.
  • W.P. Risk, C.T. Rettner, and S. Raoux, Thermal Conductivities and Phase Transition Temperatures of Various Phase-Change Materials Measured by the 3ω Method, Applied Physics Letters, Vol. 94, p. 101906, 2009.
  • R. Fallica, J.-L. Battaglia, S. Cocco, C. Monguzzi, A. Teren, C. Wiemer, E. Varesi, R. Cecchini, A. Gotti, and M. Fanciulli, Thermal and Electrical Characterization of Materials for Phase-Change Memory Cells, Journal of Chemical & Engineering Data, Vol. 54, pp. 1698–1701, 2009.
  • T.-Y. Lee, K.H.P. Kim, D.-S. Suh, C. Kim, Y.-S. Kang, D.G. Cahill, D. Lee, M.-H. Lee, M.-H. Kwon, K.-B. Kim, and Y. Khang, Low Thermal Conductivity in Ge2Sb2Te5–SiOx for Phase Change Memory Devices, Applied Physics Letters, Vol. 94, p. 243103, 2009.
  • J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, Thermal Characterization of the SiO2-Ge2Sb2Te5 Interface from Room Temperature up to 400°C, Journal of Applied Physics, Vol. 107, p. 044314, 2010.
  • D. Lee, Formation of Ge2Sb2Te5–TiOx Nanostructures for Phase Change Random Access Memory Applications, Electrochemical and Solid-State Letters, Vol. 13, pp. K8, 2010.
  • J.P. Reifenberg, C. Kuo-wei, M.A. Panzer, K. SangBum, J.A. Rowlette, M. Asheghi, H.S.P. Wong, and K.E. Goodson, Thermal Boundary Resistance Measurements for Phase-Change Memory Devices, IEEE Electron Device Letters, Vol. 31, pp. 56–58, 2010.
  • J. Lee, Z. Li, J.P. Reifenberg, S. Lee, R. Sinclair, M. Asheghi, and K.E. Goodson, Thermal Conductivity Anisotropy and Grain Structure in Ge2Sb2Te5 Films, Journal of Applied Physics, Vol. 109, p. 084902, 2011.
  • J. Lee, K. SangBum, R. Jeyasingh, M. Asheghi, H.S.P. Wong, and K.E. Goodson, Microthermal Stage for Electrothermal Characterization of Phase-Change Memory, IEEE Electron Device Letters, Vol. 32, pp. 952–954, 2011.
  • J. Lee, E. Bozorg-Grayeli, S. Kim, M. Asheghi, H.-S. Philip Wong, and K.E. Goodson, Phonon and Electron Transport through Ge2Sb2Te5 Films and Interfaces Bounded by Metals, Applied Physics Letters, Vol. 102, p. 191911, 2013.
  • J.-L. Battaglia, V. Schick, C. Rossignol, A. Kusiak, I. Aubert, A. Lamperti, and C. Wiemer, Thermal Resistance at Al-Ge2Sb2Te5 Interface, Applied Physics Letters, Vol. 102, p. 181907, 2013.
  • J.-L. Battaglia, A. Kusiak, A. Saci, R. Fallica, A. Lamperti, and C. Wiemer, Effect of a Thin Ti Interfacial Layer on the Thermal Resistance of Ge2Sb2Te5-TiN Stack, Applied Physics Letters, Vol. 105, p. 121903, 2014.
  • H. Peng, K. Cil, A. Gokirmak, G. Bakan, Y. Zhu, C. Lai, C. Lam, and H. Silva, Thickness Dependence of the Amorphous-Cubic and Cubic-Hexagonal Phase Transition Temperatures of GeSbTe Thin Films on Silicon Nitride, Thin Solid Films, Vol. 520, pp. 2976–2978, 2012.
  • S. Raoux, J.L. Jordan-Sweet, and A.J. Kellock, Crystallization Properties of Ultrathin Phase Change Films, Journal of Applied Physics, Vol. 103, p. 114310, 2008.
  • Z. Li, J. Lee, J.P. Reifenberg, M. Asheghi, R.G.D. Jeyasingh, H.S.P. Wong, and K.E. Goodson, Grain Boundaries, Phase Impurities, and Anisotropic Thermal Conduction in Phase-Change Memory, IEEE Electron Device Letters, Vol. 32, pp. 961–963, 2011.
  • R. Jeyasingh, S.W. Fong, J. Lee, Z. Li, K.-W. Chang, D. Mantegazza, M. Asheghi, K.E. Goodson, and H.S.P. Wong, Ultrafast Characterization of Phase-Change Material Crystallization Properties in the Melt-Quenched Amorphous Phase, Nano Letters, Vol. 14, pp. 3419–3426, 2014.
  • J. Lee, T. Kodama, Y. Won, M. Asheghi, and K.E. Goodson, Phase Purity and the Thermoelectric Properties of Ge2Sb2Te5 Films Down to 25 nm Thickness, Journal of Applied Physics, Vol. 112, p. 014902, 2012.
  • Y. Won, J. Lee, M. Asheghi, T.W. Kenny, and K.E. Goodson, Phase and Thickness Dependent Modulus of Ge2Sb2Te5 Films Down to 25 nm Thickness, Applied Physics Letters, Vol. 100, p. 161905, 2012.
  • J.P. Reifenberg, D.L. Kencke, and K.E. Goodson, The Impact of Thermal Boundary Resistance in Phase-Change Memory Devices, IEEE Electron Device Letters, Vol. 29, pp. 1112–1114, 2008.
  • J. Lee, M. Asheghi, and K.E. Goodson, Impact of Thermoelectric Phenomena on Phase-Change Memory Performance Metrics and Scaling, Nanotechnology, Vol. 23, p. 205201, 2012.
  • Y. Gu, Z. Song, T. Zhang, B. Liu, and S. Feng, Novel Phase-Change Material GeSbSe for Application of Three-Level Phase-Change Random Access Memory, Solid-State Electronics, Vol. 54, pp. 443–446, 2010.
  • Y. You, K. Ota, N. Higano, H. Sone, and S. Hosaka, Multilevel Storage in Lateral Top-Heater Phase-Change Memory, IEEE Electron Device Letters, Vol. 29, pp. 876–878, 2008.
  • Y. Zhang, J. Feng, Y. Zhang, Z. Zhang, Y. Lin, T.A. Tang, B. Cai, and B. Chen, Multi-Bit Storage in Reset Process of Phase Change Access Memory (PRAM), Physica Status Solidi (RRL) - Rapid Research Letters, Vol. 1, pp. R28–R30, 2007.
  • L. Zijian, R.G.D. Jeyasingh, L. Jaeho, M. Asheghi, H.S.P. Wong, and K.E. Goodson, Electrothermal Modeling and Design Strategies for Multibit Phase-Change Memory, IEEE Transactions on Electron Devices, Vol. 59, pp. 3561–3567, 2012.
  • M.A. Panzer, H.M. Duong, J. Okawa, J. Shiomi, B.L. Wardle, S. Maruyama, and K.E. Goodson, Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon Nanotube Films, Nano Letters, Vol. 10, pp. 2395–2400, 2010.
  • M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, Thermal Properties of Metal-Coated Vertically Aligned Single-Wall Nanotube Arrays, Journal of Heat Transfer, Vol. 130, p. 052401, 2008.
  • Y. Gao, A.M. Marconnet, M.A. Panzer, S. LeBlanc, S. Dogbe, Y. Ezzahri, A. Shakouri, and K.E. Goodson, Nanostructured Interfaces for Thermoelectrics, Journal of Electronic Materials, Vol. 39, pp. 1456–1462, 2010.
  • Y. Gao, A.M. Marconnet, R. Xiang, S. Maruyama, and K.E. Goodson, Heat Capacity, Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon Nanotube Films Using Frequency-Domain Thermoreflectance, IEEE Transactions on Components,Packaging and Manufacturing Technology, Vol. 3, pp. 1524–1532, 2013.
  • A.M. Marconnet, N. Yamamoto, M.A. Panzer, B.L. Wardle, and K.E. Goodson, Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density, ACS Nano, Vol. 5, pp. 4818–4825, 2011.
  • A. McNamara, V. Sahu, Y. Joshi, and Z. Zhang, Infrared Imaging Microscope as an Effective Tool for Measuring Thermal Resistance of Emerging Interface Materials, presented at ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, HI, 13–17 March, 2011.
  • A.J. McNamara, Y. Joshi, and Z.M. Zhang, Characterization of Nanostructured Thermal Interface Materials—A Review, International Journal of Thermal Sciences, Vol. 62, pp. 2–11, 2012.
  • S.A. Putnam, D.G. Cahill, B.J. Ash, and L.S. Schadler, High-Precision Thermal Conductivity Measurements as a Probe of Polymer/Nanoparticle Interfaces, Journal of Applied Physics, Vol. 94, pp. 6785–6788, 2003.
  • X. Wang, B.A. Cola, T.L. Bougher, S.L. Hodson, T.S. Fisher, and X. Xu, Photoacoustic Technique for Thermal Conductivity and Thermal Interface Measurements, Annual Review of Heat Transfer, Vol. 16, pp. 135–157, 2013.
  • A.M. Marconnet, M. Asheghi, and K.E. Goodson, From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator Technology, Journal of Heat Transfer, Vol. 135, p. 061601, 2013.
  • K.T. Regner, D.P. Sellan, Z.H. Su, C.H. Amon, A.J.H. McGaughey, and J.A. Malen, Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance, Nature Communications, Vol. 4, p. 1640, 2013.
  • S.-M. Lee and D.G. Cahill, Heat Transport in Thin Dielectric Films, Journal of Applied Physics, Vol. 81, pp. 2590–2595, 1997.
  • Y.S. Ju, K. Kurabayashi, and K.E. Goodson, Thermal Characterization of Anisotropic Thin Dielectric Films Using Harmonic Joule Heating, Thin Solid Films, Vol. 339, pp. 160–164, 1999.
  • K.E. Goodson and Y.S. Ju, Heat Conduction in Novel Electronic Films, Annual Review of Materials Science, Vol. 29, pp. 261–293, 1999.
  • A. Majumdar, Microscale Heat Conduction in Dielectric Thin Films, Journal of Heat Transfer, Vol. 115, pp. 7–16, 1993.
  • D.G. Cahill and R.O. Pohl, Thermal Conductivity of Amorphous Solids above the Plateau, Physical Review B, Vol. 35, pp. 4067–4073, 1987.
  • Z. Li, S. Tan, E. Bozorg-Grayeli, T. Kodama, M. Asheghi, G. Delgado, M. Panzer, A. Pokrovsky, D. Wack, and K.E. Goodson, Phonon Dominated Heat Conduction Normal to Mo/Si Multilayers with Period below 10 nm, Nano Letters, Vol. 12, pp. 3121–3126, 2012.
  • A. Majumdar and P. Reddy, Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces, Applied Physics Letters, Vol. 84, pp. 4768–4770, 2004.
  • K. Kurabayashi and K.E. Goodson, Precision Measurement and Mapping of Die-Attach Thermal Resistance, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 21, pp. 506–514, 1998.
  • A. Neubrand, J. Dadda, E. Mueller, S. Perlt, and T. Höche, Spatially Resolved Thermal Conductivity Measurements Using a Thermoreflectance Microprobe, Journal of Electronic Materials, Vol. 42, pp. 2165–2171, 2013.
  • J. Yang, C. Maragliano, and A.J. Schmidt, Thermal Property Microscopy with Frequency Domain Thermoreflectance, Review of Scientific Instruments, Vol. 84, p. 104904, 2013.
  • Y.S. Ju and K.E. Goodson, Short-Time-Scale Thermal Mapping of Microdevices Using a Scanning Thermoreflectance Technique, Journal of Heat Transfer, Vol. 120, pp. 306–313, 1998.
  • J. Christofferson and A. Shakouri, Thermoreflectance Based Thermal Microscope, Review of Scientific Instruments, Vol. 76, p. 024903, 2005.
  • W.P. King, T.W. Kenny, and K.E. Goodson, Comparison of Thermal and Piezoresistive Sensing Approaches for Atomic Force Microscopy Topography Measurements, Applied Physics Letters, Vol. 85, pp. 2086–2088, 2004.
  • K.E. Goodson, M.I. Flik, L.T. Su, and D.A. Antoniadis, Prediction and Measurement of Temperature Fields in Silicon-on-Insulator Electronic Circuits, Journal of Heat Transfer, Vol. 117, pp. 574–581, 1995.
  • M.N. Touzelbaev, J. Miler, Y. Yang, G. Refai-Ahmed, and K.E. Goodson, High-Efficiency Transient Temperature Calculations for Applications in Dynamic Thermal Management of Electronic Devices, Journal of Electronic Packaging, Vol. 135, p. 031001, 2013.
  • K.E. Goodson and M.I. Flik, Effect of Microscale Thermal Conduction on the Packing Limit of Silicon-on-Insulator Electronic Devices, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, pp. 715–722, 1992.
  • A. Ziabari and A. Shakouri, Fast Thermal Simulations of Vertically Integrated Circuits (3D ICs) Including Thermal Vias, presented at 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, 30 May–1 June, 2012.
  • J.H. Park, A. Shakouri, S.M. Kang, and ASME, Fast Thermal Analysis of Vertically Integrated Circuits (3-D Ics) Using Power Blurring Method, American Society of Mechanical Engineers, New York, 2010.
  • A. Ziabari, J. Park, E.K. Ardestani, J. Renau, S. Kang, and A. Shakouri, Power Blurring: Fast Static and Transient Thermal Analysis Method for Packaged Integrated Circuits and Power Devices, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 22, pp. 2366–2379, 2014.
  • K. Etessam-Yazdani and M. Asheghi, Spatial Frequency Domain Heat Transfer Analysis of Hot Spot Spreading in Convectively Cooled Microprocessors, presented at 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, 28–31 May, 2008.
  • J. Lai and A. Majumdar, Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices, Journal of Applied Physics, Vol. 79, pp. 7353–7361, 1996.
  • P.G. Sverdrup, Y. Sungtaek Ju, and K.E. Goodson, Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors, Journal of Heat Transfer, Vol. 123, pp. 130–137, 2000.
  • K. Fushinobu, A. Majumdar, and K. Hijikata, Heat Generation and Transport in Submicron Semiconductor Devices, Journal of Heat Transfer, Vol. 117, pp. 25–31, 1995.
  • E. Pop, S. Sinha, and K.E. Goodson, Heat Generation and Transport in Nanometer-Scale Transistors, Proceedings of the IEEE, Vol. 94, pp. 1587–1601, 2006.
  • A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nature Materials, Vol. 10, pp. 569–581, 2011.
  • A.M. Marconnet, M.A. Panzer, and K.E. Goodson, Thermal Conduction Phenomena in Carbon Nanotubes and Related Nanostructured Materials, Reviews of Modern Physics, Vol. 85, pp. 1295–1326, 2013.
  • T. Tao, A. Majumdar, Z. Yang, A. Kashani, L. Delzeit, and M. Meyyappan, Indium Assisted Multiwalled Carbon Nanotube Array Thermal Interface Materials, presented at the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, San Diego, CA, 30 May–2 June, 2006.
  • T. Tao, Z. Yang, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials, IEEE Transactions on Components and Packaging Technologies, Vol. 30, pp. 92–100, 2007.
  • Y. Won, Y. Gao, M.A. Panzer, S. Dogbe, L. Pan, T.W. Kenny, and K.E. Goodson, Mechanical Characterization of Aligned Multi-Walled Carbon Nanotube Films Using Microfabricated Resonators, Carbon, Vol. 50, pp. 347–355, 2012.
  • V. Singh, T.L. Bougher, A. Weathers, Y. Cai, K. Bi, M.T. Pettes, S.A. McMenamin, W. Lv, D.P. Resler, T.R. Gattuso, D.H. Altman, K.H. Sandhage, L. Shi, A. Henry, and B.A. Cola, High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene, Nature Nano, Vol. 9, pp. 384–390, 2014.
  • O. Sanusi, R. Warzoha, and A.S. Fleischer, Energy Storage and Solidification of Paraffin Phase Change Material Embedded with Graphite Nanofibers, International Journal of Heat and Mass Transfer, Vol. 54, pp. 4429–4436, 2011.
  • R.A. Wirtz, Z. Ning, and D. Chandra, Thermal management using dry phase change material, presented at the Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Diego, CA, 9–11 March, 1999.
  • R.C. Johnson. Intel, IBM Dueling 14nm FinFETS. EE Times. 2014. Available at: http://www.eetimes.com/document.asp?doc_id=1324343. Last accessed 24 April 2015.
  • J. Cho, Z. Li, M. Asheghi, and K.E. Goodson, Near-Junction Thermal Management: Thermal Conduction in Gallium Nitride Composite Substrates, Annual Review of Heat Transfer, Vol. 18, 2014.
  • Z. Yan, G. Liu, J.M. Khan, and A.A. Balandin, Graphene Quilts for Thermal Management of High-Power GaN Transistors, Nature Communications, Vol. 3, pp. 827, 2012.
  • J.M. Cullen and J.M. Allwood, The Efficient Use of Energy: Tracing the Global Flow of Energy from Fuel to Service, Energy Policy, Vol. 38, pp. 75–81, 2010.
  • G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Berlin, 2001.
  • L.D. Hicks and M.S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor, Physical Review B, Vol. 47, pp. 16631–16634, 1993.
  • L.D. Hicks and M.S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Physical Review B, Vol. 47, pp. 12727–12731, 1993.
  • R. Kim, S. Datta, and M.S. Lundstrom, Influence of Dimensionality on Thermoelectric Device Performance, Journal of Applied Physics, Vol. 105, pp. 6, 2009.
  • D. Vashaee and A. Shakouri, Improved Thermoelectric Power Factor in Metal-Based Superlattices, Physical Review Letters, Vol. 92, p. 106103, 2004.
  • J.-H. Bahk, Z. Bian, and A. Shakouri, Electron Energy Filtering by a Nonplanar Potential to Enhance the Thermoelectric Power Factor in Bulk Materials, Physical Review B, Vol. 87, p. 075204, 2013.
  • Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, Vol. 473, pp. 66–69, 2011.
  • J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, Vol. 321, pp. 554–557, 2008.
  • M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites, Nano Letters, Vol. 11, pp. 2225–2230, 2011.
  • N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe, Nano Letters, Vol. 9, pp. 711–715, 2009.
  • W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by embedding Nanoparticles in Crystalline Semiconductors, Physical Review Letters, Vol. 96, p. 045901, 2006.
  • J.M. O. Zide, J.H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, Z.X. Bian, A. Majumdar, J.E. Bowers, A. Shakouri, and A.C. Gossard, High Efficiency Semimetal/Semiconductor Nanocomposite Thermoelectric Materials, Journal of Applied Physics, Vol. 108, p. 123702, 2010.
  • K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures, Nature, Vol. 489, pp. 414–418, 2012.
  • G.S. Nolas, J. Poon, and M. Kanatzidis, Recent Developments in Bulk Thermoelectric Materials, MRS Bulletin, Vol. 31, pp. 199–205, 2006.
  • H. Kim, M. Kaviany, J.C. Thomas, A. Van der Ven, C. Uher, and B. Huang, Structural Order–Disorder Transitions and Phonon Conductivity of Partially Filled Skutterudites, Physical Review Letters, Vol. 105, p. 265901, 2010.
  • X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy, Applied Physics Letters, Vol. 93, p. 193121, 2008.
  • V. Narayanamurti, H.L. Störmer, M.A. Chin, A.C. Gossard, and W. Wiegmann, Selective Transmission of High-Frequency Phonons by a Superlattice: The Dielectric Phonon Filter, Physical Review Letters, Vol. 43, pp. 2012–2016, 1979.
  • G. Chen, Chapter 5 Phonon Transport in Low-Dimensional Structures, in M.T. Terry (ed.), Semiconductors and Semimetals, Vol. 71, pp. 203–259, Elsevier, New York, 2001.
  • R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, Vol. 413, pp. 597–602, 2001.
  • C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features, Advanced Materials, Vol. 22, pp. 3970–3980, 2010.
  • A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Silicon Nanowires as Efficient Thermoelectric Materials, Nature, Vol. 451, pp. 168–171, 2008.
  • A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Enhanced Thermoelectric Performance of Rough Silicon Nanowires, Nature, Vol. 451, pp. 163–167, 2008.
  • F. Zhou, Thermoelectric Transport in Semiconducting Nanowires, Ph.D. Dissertation, Materials Science and Engineering, The University of Texas at Austin, 2009.
  • J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, and P. Yang, Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires, Nano Letters, Vol. 12, pp. 2475–2482, 2012.
  • J.P. Feser, J.S. Sadhu, B.P. Azeredo, K.H. Hsu, J. Ma, J. Kim, M. Seong, N.X. Fang, X. Li, P.M. Ferreira, S. Sinha, and D.G. Cahill, Thermal Conductivity of Silicon Nanowire Arrays with Controlled Roughness, Journal of Applied Physics, Vol. 112, p. 114306, 2012.
  • L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals, Nature, Vol. 508, pp. 373–377, 2014.
  • J. Carrete, N. Mingo, and S. Curtarolo, Low Thermal Conductivity and Triaxial Phononic Anisotropy of SnSe, Applied Physics Letters, Vol. 105, p. 101907, 2014.
  • C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, and G.J. Snyder, Thermoelectric Properties of p-Type Polycrystalline SnSe Doped with Ag, Journal of Materials Chemistry A, Vol. 2, pp. 11171–11176, 2014.
  • H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, J.E. Bowers, A.C. Gossard, A. Shakouri, and W. Kim, Right Sizes of Nano- and Microstructures for High-Performance and Rigid Bulk Thermoelectrics, Proceedings of the National Academy of Sciences, Vol. 111, pp. 10949–10954, 2014.
  • J.-H. Bahk and A. Shakouri, Enhancing the Thermoelectric Figure of Merit through the Reduction of Bipolar Thermal Conductivity with Heterostructure Barriers, Applied Physics Letters, Vol. 105, p. 052106, 2014.
  • C. Heideman, N. Nyugen, J. Hanni, Q. Lin, S. Duncombe, D.C. Johnson, and P. Zschack, The Synthesis and Characterization of New [(BiSe)(1.10)](m)[NbSe2](n), [(PbSe)(1.10)](m)[NbSe2](n), [(CeSe)(1.14)](m)[NbSe2](n) and [(PbSe)(1.12)](m)[TaSe2](n) Misfit Layered Compounds, Journal of Solid State Chemistry, Vol. 181, pp. 1701–1706, 2008.
  • V.H. Johnson, Heat-Generated Cooling Opportunities in Vehicles, SAE Technical Paper, Society of Automotive Engineers, 2002.
  • R. Farrington and J. Rugh, Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range, presented at Earth Technologies Forum, Washington, DC, 31 October, 2000.
  • K. Kunze, S. Wolff, I. Lade, and J. Tonhauser, A Systematic Analysis of CO2-Reduction by an Optimized Heat Supply During Vehicle Warm-Up, SAE Technical Paper, 2006.
  • I. Gur, K. Sawyer, and R. Prasher, Searching for a Better Thermal Battery, Science, Vol. 335, pp. 1454–1455, 2012.
  • R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, and O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, Vol. 319, pp. 939–943, 2008.
  • H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji, L. Shi, and R.S. Ruoff, Enhanced Thermal Conductivity of Phase Change Materials with Ultrathin-Graphite Foams for Thermal Energy Storage, Energy & Environmental Science, Vol. 7, pp. 1185–1192, 2014.
  • R. Xing, Y. Rao, W. TeGrotenhuis, N. Canfield, F. Zheng, D.W. Winiarski, and W. Liu, Advanced Thin Zeolite/Metal Flat Sheet Membrane for Energy Efficient Air Dehumidification and Conditioning, Chemical Engineering Science, Vol. 104, pp. 596–609, 2013.
  • E. Rephaeli, A. Raman, and S. Fan, Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling, Nano Letters, Vol. 13, pp. 1457–1461, 2013.
  • C.G. Granqvist and A. Hjortsberg, Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films, Journal of Applied Physics, Vol. 52, pp. 4205–4220, 1981.
  • S. Narayana and Y. Sato, Heat Flux Manipulation with Engineered Thermal Materials, Physical Review Letters, Vol. 108, p. 214303, 2012.
  • W.P. King, T.W. Kenny, K.E. Goodson, G.L.W. Cross, M. Despont, U.T. Durig, H. Rothuizen, G. Binnig, and P. Vettiger, Design of Atomic Force Microscope Cantilevers for Combined Thermomechanical Writing and Thermal Reading in Array Operation, Journal of Microelectromechanical Systems, Vol. 11, pp. 765–774, 2002.
  • B.A. Nelson and W.P. King, Temperature Calibration of Heated Silicon Atomic Force Microscope Cantilevers, Sensors and Actuators A: Physical, Vol. 140, pp. 51–59, 2007.
  • W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, and M. Rosenberger, Heated Atomic Force Microscope Cantilevers and Their Applications, Annual Review of Heat Transfer, Vol. 16, pp. 287–326, 2013.
  • J.R. Felts, S. Somnath, R.H. Ewoldt, and W.P. King, Nanometer-Scale Flow of Molten Polyethylene from a Heated Atomic Force Microscope Tip, Nanotechnology, Vol. 23, p. 215301, 2012.
  • D. Pires, J.L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, and A.W. Knoll, Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes, Science, Vol. 328, pp. 732–735, 2010.
  • Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, and E. Riedo, Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics, Science, Vol. 328, pp. 1373–1376, 2010.
  • A. Oron, S.H. Davis, and S.G. Bankoff, Long-Scale Evolution of Thin Liquid Films, Reviews of Modern Physics, Vol. 69, pp. 931–980, 1997.
  • B.A. Nelson and W.P. King, Modeling and Simulation of the Interface Temperature Between a Heated Silicon Tip and a Substrate, Nanoscale and Microscale Thermophysical Engineering, Vol. 12, pp. 98–115, 2008.
  • S.H. Jin, S.N. Dunham, J. Song, X. Xie, J.-h. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M.A. Wahab, M. Menon, E. Cho, K.L. Grosse, D.J. Lee, H.U. Chung, E. Pop, M.A. Alam, W.P. King, Y. Huang, and J.A. Rogers, Using Nanoscale Thermocapillary Flows to Create Arrays of Purely Semiconducting Single-Walled Carbon Nanotubes, Nature Nano, Vol. 8, pp. 347–355, 2013.
  • P.E. Sheehan, L.J. Whitman, W.P. King, and B.A. Nelson, Nanoscale Deposition of Solid Inks via Thermal Dip Pen Nanolithography, Applied Physics Letters, Vol. 85, pp. 1589–1591, 2004.
  • S. Chung, J.R. Felts, D. Wang, W.P. King, and J.J. De Yoreo, Temperature-Dependence of Ink Transport during Thermal Dip-Pen Nanolithography, Applied Physics Letters, Vol. 99, p. 193101, 2011.
  • M. Yang, P.E. Sheehan, W.P. King, and L.J. Whitman, Direct Writing of a Conducting Polymer with Molecular-Level Control of Physical Dimensions and Orientation, Journal of the American Chemical Society, Vol. 128, pp. 6774–6775, 2006.
  • W.-K. Lee, L.J. Whitman, J. Lee, W.P. King, and P.E. Sheehan, The Nanopatterning of a Stimulus-Responsive Polymer by Thermal Dip-Pen Nanolithography, Soft Matter, Vol. 4, pp. 1844–1847, 2008.
  • W.K. Lee, Z. Dai, W.P. King, and P.E. Sheehan, Maskless Nanoscale Writing of Nanoparticle–Polymer Composites and Nanoparticle Assemblies Using Thermal Nanoprobes, Nano Letters, Vol. 10, pp. 129–133, 2009.
  • B.A. Nelson, W.P. King, A.R. Laracuente, P.E. Sheehan, and L.J. Whitman, Direct Deposition of Continuous Metal Nanostructures by Thermal Dip-Pen Nanolithography, Applied Physics Letters, Vol. 88, p. 033104, 2006.
  • P.C. Fletcher, J.R. Felts, Z. Dai, T.D. Jacobs, H. Zeng, W. Lee, P.E. Sheehan, J.A. Carlisle, R.W. Carpick, and W.P. King, Wear-Resistant Diamond Nanoprobe Tips with Integrated Silicon Heater for Tip-Based Nanomanufacturing, ACS Nano, Vol. 4, pp. 3338–3344, 2010.
  • H.J. Kim, N. Moldovan, J.R. Felts, S. Somnath, Z. Dai, T.D.B. Jacobs, R.W. Carpick, J.A. Carlisle, and W.P. King, Ultrananocrystalline Diamond Tip Integrated onto a Heated Atomic Force Microscope Cantilever, Nanotechnology, Vol. 23, p. 495302, 2012.
  • W.-K. Lee, J.T. Robinson, D. Gunlycke, R.R. Stine, C.R. Tamanaha, W.P. King, and P.E. Sheehan, Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks, Nano Letters, Vol. 11, pp. 5461–5464, 2011.
  • H. Hu, P.K. Mohseni, L. Pan, X. Li, S. Somnath, J.R. Felts, M.A. Shannon, and W.P. King, Fabrication of Arbitrarily Shaped Silicon and Silicon Oxide Nanostructures Using Tip-Based Nanofabrication, Journal of Vacuum Science & Technology B, Vol. 31, p. 06FJ01, 2013.
  • M. Dietzel and S.M. Troian, Mechanism for Spontaneous Growth of Nanopillar Arrays in Ultrathin Films Subject to a Thermal Gradient, Journal of Applied Physics, Vol. 108, p. 074308, 2010.
  • S.Y. Chou, L. Zhuang, and L. Guo, Lithographically Induced Self-Construction of Polymer Microstructures for Resistless Patterning, Applied Physics Letters, Vol. 75, pp. 1004–1006, 1999.
  • E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, and U. Steiner, Thermomechanical Lithography: Pattern Replication Using a Temperature Gradient Driven Instability, Advanced Materials, Vol. 15, pp. 514–517, 2003.
  • M. Dietzel and S.M. Troian, Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses, Physical Review Letters, Vol. 103, p. 074501, 2009.
  • J. Song, C. Lu, C. Zhang, S.H. Jin, Y. Li, S.N. Dunham, X. Xie, F. Du, Y. Huang, and J.A. Rogers, Modeling of Thermocapillary Flow to Purify Single-Walled Carbon Nanotubes, RSC Advances, Vol. 4, pp. 42454–42461, 2014.
  • S. Hun Jin, J. Song, H. Uk Chung, C. Zhang, S.N. Dunham, X. Xie, F. Du, T.-i. Kim, J.-H. Lee, Y. Huang, and J.A. Rogers, Fundamental Effects in Nanoscale Thermocapillary Flow, Journal of Applied Physics, Vol. 115, p. 054315, 2014.
  • F. Xiong, M.-H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, and E. Pop, Self-Aligned Nanotube–Nanowire Phase Change Memory, Nano Letters, Vol. 13, pp. 464–469, 2012.
  • J.-W. Do, D. Estrada, X. Xie, N.N. Chang, J. Mallek, G.S. Girolami, J.A. Rogers, E. Pop, and J.W. Lyding, Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance, Nano Letters, Vol. 13, pp. 5844–5850, 2013.
  • P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, and G.K. Binnig, The Millipede—More Than One Thousand Tips for Future AFM Storage, IBM Journal of Research and Development, Vol. 44, pp. 323–340, 2000.
  • S. Somnath, H.J. Kim, H. Hu, and W.P. King, Parallel Nanoimaging and Nanolithography Using a Heated Microcantilever Array, Nanotechnology, Vol. 25, p. 014001, 2014.
  • Z. Qin and J.C. Bischof, Thermophysical and Biological Responses of Gold Nanoparticle Laser Heating, Chemical Society Reviews, Vol. 41, pp. 1191–217, 2012.
  • A.K. Gupta and M. Gupta, Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications, Biomaterials, Vol. 26, pp. 3995–4021, 2005.
  • V.S. Kalambur, E.K. Longmire, and J.C. Bischof, Cellular Level Loading and Heating of Superparamagnetic Iron Oxide Nanoparticles, Langmuir, Vol. 23, pp. 12329–12336, 2007.
  • P.J. Hoopes, A.A. Petryk, B. Gimi, A.J. Giustini, J.B. Weaver, J. Bischof, R. Chamberlain, and M. Garwood, In vivo Imaging and Quantification of Iron Oxide Nanoparticle Uptake and Biodistribution, ACS Nano, Vol. 4, pp. 699–708, 2012.
  • A.J. Giustini, R.E. Gottesman, A.A. Petryk, A.M. Rauwerdink, and P.J. Hoopes, Kinetics and Pathogenesis of Intracellular Magnetic Nanoparticle Cytotoxicity, Proceedings of the SPIE, Vol. 7901, p. 790118, 2011.
  • I.A. Brezovich, Low Frequency Hyperthermia: Capacitive and Ferromagnetic Thermoseed Methods, Medical Physics Monograph, Vol. 16, pp. 85–111, 1988.
  • Y.C. Song, B.S. Khirabadi, F. Lightfoot, K.G. Brockbank, and M.J. Taylor, Vitreous Cryopreservation Maintains the Function of Vascular Grafts, Nature Biotechnology, Vol. 18, pp. 296–299, 2000.
  • M.J. Taylor, Y.C. Song, and K.G.M. Brock, Vitrification in Tissue Preservation: New Developments, in Life in the Frozen State, ed: CRC Press, 2004.
  • M.L. Etheridge, Y. Xu, L. Rott, J. Choi, B. Glasmacher, and J.C. Bischof, RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials, Technology, Vol. 2, pp. 229–242, 2014.
  • M.L. Etheridge and J.C. Bischof, Optimizing Magnetic Nanoparticle Based Thermal Therapies within the Physical Limits of Heating, Annals of Biomedical Engineering, Vol. 41, pp. 78–88, 2013.
  • R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy, Journal of Physics: Condensed Matter, Vol. 18, pp. S2919, 2006.
  • S. Dutz and R. Hergt, Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy, International Journal of Hyperthermia, Vol. 29, pp. 790–800, 2013.
  • R.E. Rosensweig, Heating Magnetic Fluid with Alternating Magnetic Field, Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 370–374, 2002.
  • M.L. Etheridge, K.R. Hurley, J. Zhang, S. Jeon, H.L. Ring, C. Hogan, C.L. Haynes, M. Garwood, and J.C. Bischof, Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles, Technology, Vol. 2, p. 214, 2014.
  • A. Jordan, R. Scholz, K. Maier-Hauff, F.K. van Landeghem, N. Waldoefner, U. Teichgraeber, J. Pinkernelle, H. Bruhn, F. Neumann, B. Thiesen, A. von Deimling, and R. Felix, The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma, Journal of Neurooncology, Vol. 78, pp. 7–14, 2006.
  • A.O. Govorov and H.H. Richardson, Generating Heat with Metal Nanoparticles, Nano Today, Vol. 2, pp. 30–38, 2007.
  • H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, and A.O. Govorov, Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions, Nano Letters, Vol. 9, pp. 1139–1146, 2009.
  • Y. Rabin, Is Intracellular Hyperthermia Superior to Extracellular Hyperthermia in the Thermal Sense? International Journal of Hyperthermia, Vol. 18, pp. 194–202, 2002.
  • P. Keblinski, D.G. Cahill, A. Bodapati, C.R. Sullivan, and T.A. Taton, Limits of Localized Heating by Electromagnetically Excited Nanoparticles, Journal of Applied Physics, Vol. 100, p. 054305, 2006.
  • H. Huang, S. Delikanli, H. Zeng, D.M. Ferkey, and A. Pralle, Remote Control of Ion Channels and Neurons through Magnetic-Field Heating of Nanoparticles, Nature Nanotechnology, Vol. 5, pp. 602–606, 2010.
  • A. Riedinger, P. Guardia, A. Curcio, M.A. Garcia, R. Cingolani, L. Manna, and T. Pellegrino, Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles, Nano Letters, Vol. 13(6), pp. 2399–2406, 2013.
  • E. Amstad, J. Kohlbrecher, E. Müller, T. Schweizer, M. Textor, and E. Reimhult, Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes, Nano Letters, Vol. 11, pp. 1664–1670, 2011.
  • M. Creixell, A.C. Bohorquez, M. Torres-Lugo, and C. Rinaldi, EGFR-Targeted Magnetic Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise, ACS Nano, Vol. 5, pp. 7124–7129, 2011.
  • A.M. Elliott, R.J. Stafford, J. Schwartz, J. Wang, A.M. Shetty, C. Bourgoyne, P. O’Neal, and J.D. Hazle, Laser-Induced Thermal Response and Characterization of Nanoparticles for Cancer Treatment Using Magnetic Resonance Thermal Imaging, Medical Physics, Vol. 34, pp. 3102–3108, 2007.
  • J. Vera and Y. Bayazitoglu, Gold Nanoshell Density Variation with Laser Power for Induced Hyperthermia, International Journal of Heat and Mass Transfer, Vol. 52, pp. 564–573, 2009.
  • S.K. Cheong, S. Krishnan, and S.H. Cho, Modeling of Plasmonic Heating from Individual Gold Nanoshells for Near-Infrared Laser-Induced Thermal Therapy, Medical Physics, Vol. 36, pp. 4664–4671, 2009.
  • S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, and W.C.W. Chan, Mediating Tumor Targeting Efficiency of Nanoparticles through Design, Nano Letters, Vol. 9, pp. 1909–1915, 2009.
  • B.D. Chithrani and W.C.W. Chan, Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes, Nano Letters, Vol. 7, pp. 1542–1550, 2007.
  • B.D. Chithrani, A.A. Ghazani, and W.C.W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, Vol. 6, pp. 662–668, 2006.
  • R. Goel, N. Shah, R. Visaria, G.F. Paciotti, and J.C. Bischof, Biodistribution of TNF-Alpha-Coated Gold Nanoparticles in an in vivo Model System, Nanomedicine (London), Vol. 4, pp. 401–410, 2009.
  • G. Ke, C. Wang, Y. Ge, N. Zheng, Z. Zhu, and C.J. Yang, L-DNA Molecular Beacon: A Safe, Stable, and Accurate Intracellular Nano-Thermometer for Temperature Sensing in Living Cells, Journal of the American Chemical Society, Vol. 134, pp. 18908–18911, 2012.
  • D.M. Toylia, C.F. de la Casasa, D.J. Christlea, V.V. Dobrovitskib, and D.D. Awschalom, Fluorescence Thermometry Enhanced by the Quantum Coherence of Single Spins in Diamond, PNAS, Vol. 110, pp. 8417–8421, 2013.
  • S. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Donà, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, and G. Chirico, A Molecular Thermometer for Nanoparticles for Optical Hyperthermia, Nano Letters, Vol. 13, pp. 2004–2010, 2013.
  • C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, and L.D. Carlos, A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale, Advanced Materials, Vol. 22, pp. 4499–4504, 2010.
  • G.W. Walker, V.C. Sundar, C.M. Rudzinski, A.W. Wun, M.G. Bawendi, and D. Nocera, Quantum-Dot Optical Temperature Probes, Applied Physics Letters, Vol. 83, pp. 3555–3557, 2003.
  • S. Wang, S. Westcott, and W. Chen, Nanoparticle Luminescene Thermometry, Journal of Physical Chemistry B, Vol. 106, pp. 11203–11209, 2002.
  • B. Han, W.L. Hanson, K. Bensalah, A. Tuncel, J.M. Stern, and J.A. Cadeddu, Development of Quantum Dot–Mediated Fluorescence Thermometry for Thermal Therapies, Annals of Biomedical Engineering, Vol. 37, pp. 1230–1239, 2009.
  • K. Bensalah, A. Tuncel, W.L. Hanson, B. Han, and J.A. Cadeddu, Monitoring of Thermal Dose during Ablation Therapy Using Quantum Dot–Mediated Fluorescence Thermometry, Journal of Endourology, Vol. 24, pp. 1903–1908, 2010.
  • S. Ghosh, W.L. Hanson, N. Abdollahzadeh, and B. Han, Effects of Light–Tissue Interaction on Quantum Dot Mediated Fluorescence Thermometry, Measurement Science and Technology, Vol. 23, p. 045704, 2012.
  • F. Vetrone, R. Naccache, A. Zamarrón, A.J. de la Fuente, F. Sanz-Rodríguez, L.M. Maestro, E.M. Rodriguez, D. Jaque, J.G. Solé, and J.A. Capobianco, Temperature Sensing Using Fluorescent Nanothermometers, ACS Nano, Vol. 4, pp. 3254–3258, 2010.
  • G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, and M.D. Lukin, Nanometer-Scale Thermometry in a Living Cell, Nature, Vol. 500, pp. 54–59, 2013.
  • L. Xu, B.J. Lee, W.L. Hanson, and B. Han, Brownian Motion Induced Dynamic Near-Field Interaction between Quantum Dots and Plasmonic Nanoparticles in Aqueous Medium, Applied Physics Letters, Vol. 96, p. 174101, 2010.
  • S.H. Choi, B. Kwak, B. Han, and Y.L. Kim, Competition between Excitation and Emission Enhancements of Quantum Dots on Disordered Plasmonic Nanostructure, Optics Express, Vol. 20, pp. 16785–16793, 2012.
  • G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, Oxford, UK, 2005.
  • M. Kaviany, Heat Transfer Physics, second ed., Cambridge University Press, New York, 2014.
  • S.Volz and R.M. Carminati, Microscale and Nanoscale Heat Transfer, Springer, Berlin, 2007.
  • Z.M. Zhang, Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
  • G. Chen, Nano-to-Macro Transport Processes. 2012. Available at: http://ocw.mit.edu/courses/mechanical-engineering/2-57-nano-to-macro-transport-processes-spring-2012/video-lectures/. Last accessed 24 April 2015.
  • A. Shakouri, S. Datta, and M. Lundstrom, Thermoelectricity: From Atoms to Systems. Available at: https://nanohub.org/courses/TEAS. Last accessed 24 April 2015.
  • T.S. Fisher, Thermal Energy at the Nanoscale. Available at: https://nanohub.org/courses/TE. Last accessed 24 April 2015.
  • A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Lead Telluride Alloy Thermoelectrics, Materials Today, Vol. 14, pp. 526–532, 2011.
  • C.B. Vining, An Inconvenient Truth about Thermoelectrics, Nature Materials, Vol. 8, pp. 83–85, 2009.
  • A. Muto and G. Chen, Thermoelectric Topping Cycle for Trough Solar Thermal Power Plant, MRS Online Proceedings Library, Vol. 1218, p. 1218-Z07–05, 2009.
  • T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, and R.A. Taylor, Nanofluid-Based Direct Absorption Solar Collector, Journal of Renewable and Sustainable Energy, Vol. 2, p. 033102, 2010.
  • Grand Challenges for Engineering. 2008. Available at: http://www.engineeringchallenges.org/cms/8996/9221.aspx. Last accessed 24 April 2015.
  • V. Zhirnov, ICT—Energy—Concepts Towards Zero—Power Information and Communication Technology, G. Fagas, L. Gammaitoni, D. Paul, G.A. Berini (eds.), InTech, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.