894
Views
16
CrossRef citations to date
0
Altmetric
Articles

Thermal Transport Properties of Black Phosphorus: A Topical Review

&
Pages 45-57 | Received 31 Aug 2016, Accepted 30 Dec 2016, Published online: 10 Feb 2017

References

  • A. Morita, Semiconducting Black Phosphorus, Applied Physics A, Vol. 39, No. 4, pp. 227–242, 1986.
  • A. Rodin, A. Carvalho, and A.C. Neto, Strain-Induced Gap Modification in Black Phosphorus, Physical Review Letters, Vol. 112, No. 17, pp. 176801, 2014.
  • D. Warschauer, Electrical and Optical Properties of Crystalline Black Phosphorus, Journal of Applied Physics, Vol. 34, No. 7, pp. 1853–1860, 1963.
  • T. Nishii, Y. Maruyama, T. Inabe, and I. Shirotani, Synthesis and Characterization of Black Phosphorus Intercalation Compounds, Synthetic Metals, Vol. 18, No. 1, pp. 559–564, 1987.
  • A. Brown and S. Rundqvist, Refinement of the Crystal Structure of Black Phosphorus, Acta Crystallographica, Vol. 19, No. 4, pp. 684–685, 1965.
  • P. Bridgman, Two New Modifications of Phosphorus, Journal of the American Chemical Society, Vol. 36, No. 7, pp. 1344–1363, 1914.
  • H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility, ACS Nano, Vol. 8, No. 4, pp. 4033–4041, 2014.
  • L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Black Phosphorus Field-Effect Transistors, Nature Nanotechnology, Vol. 9, No. 5, pp. 372–377, 2014.
  • F. Xia, H. Wang, and Y. Jia, Rediscovering Black Phosphorus as an Anisotropic Layered Material for Optoelectronics and Electronics, Nature Communications, Vol. 5, pp. 4458, 2014.
  • S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, Tunable Transport Gap in Phosphorene, Nano Letters, Vol. 14, No. 10, pp. 5733–5739, 2014.
  • A.K. Geim and I.V. Grigorieva, Van der Waals Heterostructures, Nature, Vol. 499, No. 7459, pp. 419–425, 2013.
  • K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, Two-Dimensional Atomic Crystals, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 30, pp. 10451–10453, 2005.
  • Z.-Y. Ong, Y. Cai, G. Zhang, and Y.-W. Zhang, Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene, The Journal of Physical Chemistry C, Vol. 118, No. 43, pp. 25272–25277, 2014.
  • D. Broido, M. Malorny, G. Birner, N. Mingo, and D. Stewart, Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles, Applied Physics Letters, Vol. 91, No. 23, pp. 231922, 2007.
  • K. Esfarjani, G. Chen, and H. Stokes, Heat Transport in Silicon from First-Principles Calculations, Physical Review B, Vol. 84, No. 8, pp. 085204, 2011.
  • Z.T. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phonon Conduction in PbSe, PbTe, and PbTe1-xSex from First-Principles Calculations, Physical Review B, Vol. 85, No. 18, pp. 184303, 2012.
  • G. Qin, X. Zhang, X.-Y. Yue, Z. Qin, H. Wang, Y. Han, and M. Hu, Resonant Bonding Driven Giant Phonon Anharmonicity and Low Thermal Conductivity of Phosphorene, Physical Review B, Vol. 94, No. 16, pp. 165445, 2016.
  • G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, and G. Su, Anisotropic Intrinsic Lattice Thermal Conductivity of Phosphorene from First Principles, Physical Chemistry Chemical Physics, Vol. 17, No. 7, pp. 4854–4858, 2015.
  • B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, and L. Shi, Temperature and Thickness Dependences of the Anisotropic In-Plane Thermal Conductivity of Black Phosphorus, Advanced Materials, 2016.
  • L. Zhu, G. Zhang, and B. Li, Coexistence of Size-Dependent and Size-Independent Thermal Conductivities in Phosphorene, Physical Review B, Vol. 90, No. 21, pp. 214302, 2014.
  • A. Jain and A.J. McGaughey, Strongly Anisotropic In-Plane Thermal Transport in Single-Layer Black Phosphorene, Scientific Reports, Vol. 5, pp. 8501, 2015.
  • J. Zhang, H. Liu, L. Cheng, J. Wei, J. Liang, D. Fan, P. Jiang, and J. Shi, Thermal Conductivities of Phosphorene Allotropes from First-Principle Calculations: A Comparative Study, arXiv Preprint arXiv:1601.07302, 2016.
  • J. Zhu, H. Park, J.Y. Chen, X. Gu, H. Zhang, S. Karthikeyan, N. Wendel, S.A. Campbell, M. Dawber, and X. Du, Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus, Advanced Electronic Materials, Vol. 2, No. 5, pp. 1600040, 2016.
  • Z.T. Tian, S. Lee, and G. Chen, Heat Transfer in Thermoelectric Materials and Devices, Journal of Heat Transfer, Vol. 135, No. 6, pp. 061605, 2013.
  • M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Perspectives on Thermoelectrics: From Fundamentals to Device Applications, Energy & Environmental Science, Vol. 5, No. 1, pp. 5147–5162, 2012.
  • Z.-X. Hu, X. Kong, J. Qiao, B. Normand, and W. Ji, Interlayer Electronic Hybridization Leads to Exceptional Thickness-Dependent Vibrational Properties in Few-Layer Black Phosphorus, Nanoscale, Vol. 8, No. 5, pp. 2740–2750, 2016.
  • Y. Wang, A.K. Vallabhaneni, B. Qiu, and X. Ruan, Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies, Nanoscale and Microscale Thermophysical Engineering, Vol. 18, No. 2, pp. 155–182, 2014.
  • L. Lindsay, D. Broido, and N. Mingo, Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and Phonon–Phonon Scattering Selection Rules, Physical Review B, Vol. 80, No. 12, pp. 125407, 2009.
  • J. Carrete, W. Li, L. Lindsay, D.A. Broido, L.J. Gallego, and N. Mingo, Physically Founded Phonon Dispersions of Few-Layer Materials and the Case of Borophene, Materials Research Letters, Vol. 4, No. 4, pp. 204–211, 2016.
  • J.-W. Jiang, Thermal Conduction in Single-Layer Black Phosphorus: Highly Anisotropic? Nanotechnology, Vol. 26, No. 5, pp. 055701, 2015.
  • T.-H. Liu and C.-C. Chang, Anisotropic Thermal Transport in Phosphorene: Effects of Crystal Orientation, Nanoscale, Vol. 7, No. 24, pp. 10648–10654, 2015.
  • Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, D.Y. Peide, and X. Xu, Anisotropic In-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus, Nature Communications, Vol. 6, pp. 8572, 2015.
  • S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee, G. Li, H.S. Choe, A. Suslu, Y. Chen, and C. Ko, Anisotropic In-Plane Thermal Conductivity of Black Phosphorus Nanoribbons at Temperatures Higher than 100 K, Nature Communications, Vol. 6, pp. 8573, 2015.
  • H. Jang, J.D. Wood, C.R. Ryder, M.C. Hersam, and D.G. Cahill, Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus, Advanced Materials, Vol. 27, No. 48, pp. 8017–8022, 2015.
  • B. Sun, X. Gu, Q. Zeng, X. Huang, Y. Yan, Z. Liu, R. Yang, and Y.K. Koh, Temperature Dependence of Anisotropic Thermal-Conductivity Tensor of Bulk Black Phosphorus, Advanced Materials, Vol. 29, No. 3, pp. 1603297, 2016.
  • L. Su and Y. Zhang, Temperature Coefficients of Phonon Frequencies and Thermal Conductivity in Thin Black Phosphorus Layers, Applied Physics Letters, Vol. 107, No. 7, pp. 071905, 2015.
  • J. Judek, A.P. Gertych, M. Świniarski, A. Łapińska, A. Dużyńska, and M. Zdrojek, High Accuracy Determination of the Thermal Properties of Supported 2D Materials, Scientific Reports, Vol. 5, pp. 12422, 2015.
  • A. Łapińska, A. Taube, J. Judek, and M. Zdrojek, Temperature Evolution of Phonon Properties in Few-Layer Black Phosphorus, The Journal of Physical Chemistry C, Vol. 120, No. 9, pp. 5265–5270, 2016.
  • D.J. Late, Temperature Dependent Phonon Shifts in Few-Layer Black Phosphorus, ACS Applied Materials & Interfaces, Vol. 7, No. 10, pp. 5857–5862, 2015.
  • Y. Wang, C. Cong, R. Fei, W. Yang, Y. Chen, B. Cao, L. Yang, and T. Yu, Remarkable Anisotropic Phonon Response in Uniaxially Strained Few-Layer Black Phosphorus, Nano Research, Vol. 8, No. 12, pp. 3944–3953, 2015.
  • G.A. Slack, Thermal Conductivity of Elements with Complex Lattices: B, P, S, Physical Review, Vol. 139, No. 2A, pp. A507, 1965.
  • S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, and L. Shi, Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments, ACS Nano, Vol. 5, No. 1, pp. 321–328, 2010.
  • A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nature Materials, Vol. 10, No. 8, pp. 569–581, 2011.
  • S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, and R.S. Ruoff, Thermal Conductivity of Isotopically Modified Graphene, Nature Materials, Vol. 11, No. 3, pp. 203–207, 2012.
  • E. Pop, V. Varshney, and A.K. Roy, Thermal Properties of Graphene: Fundamentals and Applications, MRS Bulletin, Vol. 37, No. 12, pp. 1273–1281, 2012.
  • N. Bonini, J. Garg, and N. Marzari, Acoustic Phonon Lifetimes and Thermal Transport in Free-Standing and Strained Graphene, Nano Letters, Vol. 12, No. 6, pp. 2673–2678, 2012.
  • L. Lindsay, W. Li, J. Carrete, N. Mingo, D. Broido, and T. Reinecke, Phonon Thermal Transport in Strained and Unstrained Graphene from First Principles, Physical Review B, Vol. 89, No. 15, pp. 155426, 2014.
  • G.A. Slack, New Materials and Performance Limits for Thermoelectric Cooling, in D.W. Rowe (ed.), CRC Handbook of Thermoelectrics, pp. 407–440, CRC Press, Boca Raton, FL, 1995.
  • R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, and L. Yang, Enhanced Thermoelectric Efficiency via Orthogonal Electrical and Thermal Conductances in Phosphorene, Nano Letters, Vol. 14, No. 11, pp. 6393–6399, 2014.
  • B.-L. Huang and M. Kaviany, Ab initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride, Physical Review B, Vol. 77, No. 12, pp. 125209, 2008.
  • C. Li, H. Ma, and Z. Tian, Thermoelectric Properties of Crystalline and Amorphous Polypyrrole: A Computational Study, Applied Thermal Engineering, Vol. 111, pp. 1441–1447, 2016.
  • R. Guo, X. Wang, Y. Kuang, and B. Huang, First-Principles Study of Anisotropic Thermoelectric Transport Properties of IV–VI Semiconductor Compounds SnSe and SnS, Physical Review B, Vol. 92, No. 11, pp. 115202, 2015.
  • X.-Y. Mi, X. Yu, K.-L. Yao, X. Huang, N. Yang, and J.-T. Lu, Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon–Glass Crystals, Nano Letters, Vol. 15, No. 8, pp. 5229–5234, 2015.
  • J. Zhang, H. Liu, L. Cheng, J. Wei, J. Liang, D. Fan, J. Shi, X. Tang, and Q. Zhang, Phosphorene Nanoribbon as a Promising Candidate for Thermoelectric Applications, Scientific Reports, Vol. 4, pp. 6452, 2014.
  • H. Liu, Y. Du, Y. Deng, and D.Y. Peide, Semiconducting Black Phosphorus: Synthesis, Transport Properties and Electronic Applications, Chemical Society Reviews, Vol. 44, No. 9, pp. 2732–2743, 2015.
  • A. Castellanos-Gomez, Black Phosphorus: Narrow Gap, Wide Applications, The Journal of Physical Chemistry Letters, Vol. 6, No. 21, pp. 4280–4291, 2015.
  • P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J.E. Indacochea, R.F. Klie, and A. Salehi-Khojin, High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation, Advanced Materials, Vol. 27, No. 11, pp. 1887–1892, 2015.
  • Z. Yang, J. Hao, S. Yuan, S. Lin, H.M. Yau, J. Dai, and S.P. Lau, Field-Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition, Advanced Materials, Vol. 27, No. 25, pp. 3748–3754, 2015.
  • M. Snure, S. Vangala, and D. Walker, Probing Phonon and Electrical Anisotropy in Black Phosphorus for Device Alignment, Optical Materials Express, Vol. 6, No. 5, pp. 1751–1756, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.