457
Views
21
CrossRef citations to date
0
Altmetric
Articles

Near-Field Thermal Radiation of Nanopatterned Black Phosphorene Mediated by Topological Transitions of Phosphorene Plasmons

ORCID Icon, &
Pages 188-199 | Received 03 Oct 2018, Accepted 31 Jan 2019, Published online: 13 Feb 2019

References

  • Y. Xuan, “An overview of micro/nanoscaled thermal radiation and its applications,” Photon. Nanostr. Fundam. Appl., vol. 12, pp. 93–113, 2014. DOI: 10.1016/j.photonics.2014.02.003.
  • Z. M. Zhang, Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007.
  • A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer and noncontact friction,” Rev. Mod. Phys., vol. 79, pp. 1291–1329, 2007. DOI: 10.1103/RevModPhys.79.1291.
  • D. G. Cahill, et al., “Nanoscale Thermal Transport. II. 2003–2012,” Appl. Phys. Rev., vol. 1, pp. 011305, 2014. DOI: 10.1063/1.4832615.
  • X. L. Liu, L. P. Wang, and Z. M. Zhang, “Near-field thermal radiation: recent progress and outlook,” Nanosc. Microsc. Therm., vol. 19, pp. 98–126, 2015. DOI: 10.1080/15567265.2015.1027836.
  • K. Park and Z. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Front. Heat Mass Transfer, vol. 4, pp. 013001, 2013. DOI: 10.5098/hmt.v4.1.3001.
  • J.-P. Mulet, K. Joulain, R. Carminati, and -J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng., vol. 6, pp. 209–222, 2002. DOI: 10.1080/10893950290053321.
  • Y. Yang, S. Basu, and L. Wang, “Radiation-based near-field thermal rectification with phase transition materials,” Appl. Phys. Lett., vol. 103, pp. 163101, 2013. DOI: 10.1063/1.4825168.
  • B. Song, et al., “Enhancement of near-field radiative heat transfer using polar dielectric thin films,” Nat. Nanotechnol., vol. 10, pp. 253–258, 2015. DOI: 10.1038/nnano.2015.6.
  • A. Didari and M. P. Mengüç, “Near-field thermal emission between corrugated surfaces separated by nano-gaps,” J. Quant. Spectrosc. Radiat. Transfer, vol. 158, pp. 43–51, 2015. DOI: 10.1016/j.jqsrt.2015.02.016.
  • J. I. Watjen, B. Zhao, and Z. M. Zhang, “Near-field radiative heat transfer between Doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett., vol. 109, pp. 203112, 2016. DOI: 10.1063/1.4967384.
  • M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun., vol. 7, pp. 12900, 2016. DOI: 10.1038/ncomms12900.
  • K. Kloppstech, et al., “Giant heat transfer in the crossover regime between conduction and radiation,” Nat. Commun., vol. 8, pp. 14475, 2017. DOI: 10.1038/ncomms14475.
  • B. Zhao, et al., “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy, vol. 41, pp. 344–350, 2017. DOI: 10.1016/j.nanoen.2017.09.054.
  • L. Cui, et al., “Study of radiative heat transfer in ångström-and nanometre-sized gaps,” Nat. Commun., vol. 8, pp. 14278, 2017. DOI: 10.1038/ncomms14479.
  • J. Shen, X. L. Liu, H. He, W. Wu, and B. Liu, “High-performance noncontact thermal diode via asymmetric nanostructures,” J. Quant. Spectrosc. Radiat. Transfer, vol. 211, pp. 1–8, 2018. DOI: 10.1016/j.jqsrt.2018.02.030.
  • M. Ghashami, et al., “Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients,” Phys. Rev. Lett., vol. 120, pp. 175901, 2018. DOI: 10.1103/PhysRevLett.120.175901.
  • A. Fiorino, et al., “A thermal diode based on nanoscale thermal radiation,” ACS Nano, vol. 12, pp. 5774–5779, 2018. DOI: 10.1021/acsnano.8b01645.
  • A. Fiorino, et al., “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol., vol. 13, pp. 806–881, 2018. DOI: 10.1038/s41565-018-0172-5.
  • C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a kerr medium,” Opt. Expr., vol. 25, pp. 23164–23180, 2017. DOI: 10.1364/OE.25.023164.
  • Y. Huang, S. V. Boriskina, and G. Chen, “Electrically tunable near-field radiative heat transfer via ferroelectric materials,” Appl. Phys. Lett., vol. 105, pp. 244102, 2014. DOI: 10.1063/1.4904456.
  • M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Convers., vol. 26, pp. 686–698, 2011. DOI: 10.1109/TEC.2011.2118212.
  • D. Wintz, et al., “Guided modes of anisotropic van der waals materials investigated by near-field scanning optical microscopy,” ACS Photon., vol. 5, pp. 1196–1201, 2018. DOI: 10.1021/acsphotonics.7b01518.
  • L. P. Wang and Z. M. Zhang, “Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material,” Nanoscale Microscale Thermophys. Eng., vol. 17, pp. 337–348, 2013. DOI: 10.1080/15567265.2013.776154.
  • A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transfer, vol. 212, pp. 120–127, 2018. DOI: 10.1016/j.jqsrt.2018.03.015.
  • J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B, vol. 94, pp. 125419, 2016. DOI: 10.1103/PhysRevB.94.125419.
  • J. Dong, J. Zhao, and L. Liu, “Radiative heat transfer in many-body systems: coupled electric and magnetic dipole approach,” Phys. Rev. B, vol. 95, pp. 125411, 2017. DOI: 10.1103/PhysRevB.95.125411.
  • R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep., vol. 3, pp. 1383, 2013. DOI: 10.1038/srep01383.
  • K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett., vol. 107, pp. 091106, 2015. DOI: 10.1063/1.4929949.
  • S. Molesky and Z. Jacob, “Ideal near-field thermophotovoltaic cells,” Phys. Rev. B, vol. 91, pp. 205435, 2015. DOI: 10.1103/PhysRevB.91.205435.
  • T. Inoue, K. Watanabe, T. Asano, and S. Noda, “Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate,” Opt. Expr., vol. 26, pp. A192–A208, 2018. DOI: 10.1364/OE.26.00A192.
  • H. Yu, Y. Duan, and Z. Yang, “Selectively enhanced near-field radiative transfer between plasmonic emitter and gasb with nanohole and nanowire periodic arrays for thermophotovoltaics,” Int. J. Heat Mass Transfer, vol. 123, pp. 67–74, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.085.
  • S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-Field Heat Transfer between Two Gratings,” Appl. Phys. Lett., vol. 98, pp. 243102, 2011. DOI: 10.1063/1.3596707.
  • X. L. Liu, J. Shen, and Y. Xuan, “Pattern-free thermal modulator via thermal radiation between van der waals materials,” J. Quant. Spectrosc. Radiat. Transfer, vol. 200, pp. 100–107, 2017. DOI: 10.1016/j.jqsrt.2017.06.010.
  • A. Ghanekar, M. Ricci, Y. Tian, O. Gregory, and Y. Zheng, “Strain-Induced modulation of near-field radiative transfer,” Appl. Phys. Lett., vol. 112, pp. 241104, 2018. DOI: 10.1063/1.5037468.
  • O. Ilic, et al., “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B, vol. 85, pp. 155422, 2012. DOI: 10.1103/PhysRevB.85.155422.
  • M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Expr., vol. 21, pp. 22173–22185, 2013. DOI: 10.1364/OE.21.022173.
  • X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photon., vol. 1, pp. 785–789, 2014. DOI: 10.1021/ph5001633.
  • V. W. Brar, et al., “Modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun., vol. 6, pp. 7032, 2015. DOI: 10.1038/ncomms8032.
  • B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between Graphene/Hbn Multilayers,” Phys. Rev. B, vol. 95, pp. 245437, 2017. DOI: 10.1103/PhysRevB.95.245437.
  • L. Jiayu, L. Baoan, and S. Sheng, “Graphene surface plasmons mediated thermal radiation,” J. Optics, vol. 20, pp. 024011, 2018. DOI: 10.1088/2040-8986/aaa1b7.
  • Y. Ge, Y. Jiang, and M. Yungui, “Near-field heat transfer between graphene monolayers: dispersion relation and parametric analysis,” Appl. Phys. Express, vol. 9, pp. 122001, 2016. DOI: 10.7567/APEX.9.122001.
  • A. Volokitin and B. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous Sio2,” Phys. Rev. B, vol. 83, pp. 241407, 2011. DOI: 10.1103/PhysRevB.83.241407.
  • Z. Zheng, A. Wang, and Y. Xuan, “Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces,” J. Quant. Spectrosc. Radiat. Transfer, vol. 208, pp. 86–95, 2018. DOI: 10.1016/j.jqsrt.2018.01.009.
  • V. B. Svetovoy, P. J. Van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B, vol. 85, pp. 155418, 2012. DOI: 10.1103/PhysRevB.85.155418.
  • K. Shi, F. Bao, and S. He, “Enhanced near-field thermal radiation based on multilayer graphene-hbn heterostructures,” ACS Photon., vol. 4, pp. 971–978, 2017. DOI: 10.1021/acsphotonics.7b00037.
  • O. Ilic, et al., “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano, vol. 12, pp. 2474–2481, 2018. DOI: 10.1021/acsnano.7b08231.
  • F. Xia, H. Wang, and Y. Jia, “Rediscovering black phosphorus as an anisotropic layered material for optos and electronics,” Nat. Commun., vol. 5, pp. 4458, 2014. DOI: 10.1038/ncomms5972.
  • N. Mao, et al., “Optical anisotropy of black phosphorus in the visible regime,” J. Am. Chem. Soc., vol. 138, pp. 300–305, 2016. DOI: 10.1021/jacs.5b10685.
  • M. Qiu, et al., “Current progress in black phosphorus materials and their applications in electrochemical energy storage,” Nanoscale, vol. 9, pp. 13384–13403, 2017. DOI: 10.1039/c7nr03318d.
  • P. Chen, N. Li, X. Chen, W.-J. Ong, and X. Zhao, “The rising star of 2d black phosphorus beyond graphene: synthesis, properties and applications,” 2D Materials, vol. 5, pp. 014002, 2017. DOI: 10.1088/2053-1583/aa8d37.
  • S. G. Jeon, H. Shin, Y. H. Jaung, J. Ahn, and J. Y. Song, “Thickness-dependent and anisotropic thermal conductivity of black phosphorus nanosheets,” Nanoscale, vol. 10, pp. 5985–5989, 2018. DOI: 10.1039/c8nr00421h.
  • X. Gao, et al., “Modulation of photothermal anisotropy using black phosphorus/rhenium diselenide heterostructures,” Nanoscale, vol. 10, pp. 10844–10849, 2018. DOI: 10.1039/c8nr02229a.
  • Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photon., vol. 5, pp. 3739–3747, 2018. DOI: 10.1021/acsphotonics.8b00776.
  • T. Low, et al., “Tunable optical properties of multilayer black phosphorus thin films,” Phys. Rev. B, vol. 90, pp. 075434, 2014. DOI: 10.1103/PhysRevB.90.075434.
  • Y. Zhang, H. Yi, and H. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photon., vol. 5, pp. 3739–3747, 2018. DOI: 10.1021/acsphotonics.8b00776.
  • L. Ge, et al., “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv, vol. 8, pp. 085321, 2018. DOI: 10.1063/1.5049471.
  • X. L. Liu and Z. M. Zhang, “Near-field thermal radiation between metasurfaces,” ACS Photon., vol. 2, pp. 1320–1326, 2015. DOI: 10.1021/acsphotonics.5b00298.
  • J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic plasmons and topological transitions over uniaxial metasurfaces,” Phys. Rev. Lett., vol. 114, pp. 233901, 2015. DOI: 10.1103/PhysRevLett.114.233901.
  • R. Guérout, J. Lussange, F. S. S. Rosa, and J. P. Hugonin, D. a. R. Dalvit, J. J. Greffet, A. Lambrecht, and S. Reynaud, “Enhanced radiative heat transfer between nanostructured gold plates,” Phys. Rev. B, vol. 85, pp. 180301, 2012. DOI: 10.1103/PhysRevB.85.180301.
  • J. Lussange, et al., “Radiative heat transfer between two dielectric nanogratings in the scattering approach,” Phys. Rev. B, vol. 86, pp. 085432, 2012. DOI: 10.1103/PhysRevB.86.085432.
  • J. Shen, X. L. Liu, and Y. Xuan, “Near-field thermal radiation between nanostructures of natural anisotropic material,” Phys. Rev. Appl., vol. 10, pp. 034029, 2018. DOI: 10.1103/PhysRevApplied.10.034029.
  • I.-B. Baek, et al., “Electron beam lithography patterning of sub-10 nm line using hydrogen silsesquioxane for nanoscale device applications,” J. Vac. Sci. Technol. B, vol. 23, pp. 3120–3123, 2005. DOI: 10.1116/1.2132328.
  • D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett., vol. 105, pp. 256805, 2010. DOI: 10.1103/PhysRevLett.105.256805.
  • A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2d materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett., vol. 116, pp. 066804, 2016. DOI: 10.1103/PhysRevLett.116.066804.
  • J. Shen, et al., “Super-planckian thermal radiation enabled by coupled quasi-elliptic 2d black phosphorus plasmons,” Appl. Therm. Eng., vol. 144, pp. 403–410, 2018. DOI: 10.1016/j.applthermaleng.2018.08.081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.