579
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enhanced Thermochemical Heat Capacity of Liquids: Molecular to Macroscale Modeling

ORCID Icon, &
Pages 235-246 | Received 19 Dec 2018, Accepted 24 Mar 2019, Published online: 07 Apr 2019

References

  • H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, and Y. Lv, “Thermal energy storage: recent developments and practical aspects,” Prog. Energy Combust. Sci., vol. 53, pp. 1–40, 2016. DOI: 10.1016/j.pecs.2015.10.003.
  • D. Aydin, S. P. Casey, and S. Riffat, “The latest advancements on thermochemical heat storage systems,” Renew. Sustain. Energy Rev., vol. 41, pp. 356–367, 2015. DOI: 10.1016/j.rser.2014.08.054.
  • I. Gur, K. Sawyer, and R. Prasher, “Searching for a better thermal battery,” Science, vol. 335, no. 6075, pp. 1454–1455, 2012. DOI: 10.1126/science.1218761.
  • H. Inaba, “New challenge in advanced thermal energy transportation using functionally thermal fluids,” Int. J. Therm. Sci., vol. 39, no. 9–11, pp. 991–1003, Oct. 2000. DOI: 10.1016/S1290-0729(00)01191-1.
  • S. Kuravi, J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, “Thermal energy storage technologies and systems for concentrating solar power plants,” Prog. Energy Combust. Sci., vol. 39, no. 4, pp. 285–319, 2013. DOI: 10.1016/j.pecs.2013.02.001.
  • F. Cao, J. Ye, and B. Yang, “Synthesis and characterization of solid-state phase change material microcapsules for thermal management applications,” J. Nanotechnol. Eng. Med., vol. 4, no. 4, p. 040901-1, Mar. 2014. DOI: 10.1115/1.4026970.
  • M. L. Mastroianni and B. E. Poling, “Energy storage capacities of reversible liquid phase chemical reactions,” Thermochim. Acta, vol. 53, no. 2, pp. 141–147, Feb. 1982. DOI: 10.1016/0040-6031(82)85002-8.
  • T. G. Lenz, L. S. Hegedus, and J. D. Vaughan, “Liquid phase thermochemical energy conversion systems—an application of Diels-Alder chemistry,” Int. J. Energy Res., vol. 6, no. 4, pp. 357–365, Jan. 1982. DOI: 10.1002/er.4440060407.
  • B. G. Sparks and B. E. Poling, “Energy storage capacity of reversible liquid-phase Diels Alder reaction between maleic anhydride and 2-methyl furan,” AIChE J., vol. 29, no. 4, pp. 534–537, Jul. 1983. DOI: 10.1002/aic.690290403.
  • P. Atkins and J. De Paula, Physical Chemistry, 8th. W. H. Freeman and Company, 2006.
  • Z. Shi et al., “Tuning the kinetics and energetics of Diels–Alder cycloaddition reactions to improve poling efficiency and thermal stability of high-temperature cross-linked electro-optic polymers,” Chem. Mater., vol. 22, no. 19, pp. 5601–5608, Oct. 2010. DOI: 10.1021/cm101815b.
  • The Royal Society Of Chemistry, “ChemSpider,” The Royal Society Of Chemistry. [Online]. Available: http://www.chemspider.com. Accessed: Mar. 14, 2019.
  • J. R. Rumble, “CRC Handbook of Chemistry and Physics, 99th Edition, 2018-2019,” Handbook of Chemistry and Physics. [Online]. Available: http://www.hbcponline.com/. Accessed: Mar. 14, 2019.
  • P. J. Linstrom and W. G. Mallard, NIST Chemistry webBook, NIST Standard Reference Database Number 69. 2014.
  • Y. Shao et al., “Advances in molecular quantum chemistry contained in the Q-Chem 4 program package,” Mol. Phys., vol. 113, no. 2, pp. 184–215, 2015. DOI: 10.1080/00268976.2014.952696.
  • J. Da Chai and M. Head-Gordon “Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections,” Phys. Chem. Chem. Phys., vol. 10, pp. 6615–6620, 2008. DOI: 10.1039/b710310g.
  • E. Goldstein, B. Beno, and K. N. Houk, “Density functional theory prediction of the relative energies and isotope effects for the concerted and stepwise mechanisms of the Diels–Alder reaction of butadiene and ethylene,” J. Am. Chem. Soc., vol. 118, no. 25, pp. 6036–6043, 1996. DOI: 10.1021/ja9601494.
  • J. S. Barber et al., “Diels–Alder cycloadditions of strained azacyclic allenes,” Nat. Chem., vol. 10, pp. 953–960, 2018. DOI: 10.1038/s41557-018-0080-1.
  • P. Yu, W. Li, and K. N. Houk, “Mechanisms and origins of selectivities of the Lewis acid-catalyzed Diels–Alder reactions between arylallenes and acrylates,” J. Org. Chem., vol. 82, no. 12, pp. 6398–6402, 2017. DOI: 10.1021/acs.joc.7b01132.
  • J. P. Guthrie, “Use of DFT methods for the calculation of the entropy of gas phase organic molecules: an examination of the quality of results from a simple approach,” J. Phys. Chem. A, vol. 105, no. 37, pp. 8495–8499, 2001. DOI: 10.1021/jp010321c.
  • Y. Li and D. C. Fang, “DFT calculations on kinetic data for some [4+2] reactions in solution,” Phys. Chem. Chem. Phys., vol. 16, no. 29, pp. 15224–15230, 2014. DOI: 10.1039/c4cp02068e.
  • B. Mennucci et al., “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” J. Phys. Chem. A, vol. 106, no. 25, pp. 6102–6113, 2002. DOI: 10.1021/jp020124t.
  • Y.-F. Yang, P. Yu, and K. N. Houk, “Computational exploration of concerted and zwitterionic mechanisms of Diels–Alder reactions between 1,2,3-triazines and enamines and acceleration by hydrogen-bonding solvents,” J. Am. Chem. Soc., vol. 139, no. 50, pp.18213–18221, 2017. DOI: 10.1021/jacs.7b08325.
  • Z. Yang et al., “Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal [6+4]/[4+2] cycloaddition,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 5, pp. E848–E855, 2018. DOI: 10.1073/pnas.1719368115.
  • The Engineering ToolBox, “Water - heat capacity (specific heat),” The Engineering ToolBox.com, 2004. [Online]. Available: https://www.engineeringtoolbox.com/specific-heat-capacity-water-d_660.html.
  • The Engineering Toolbox, “Water - density, specific weight and thermal expansion coefficient,” www.engineeringtoolbox.com, 2003. [Online]. Available: https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html. Accessed: Mar. 14, 2019.
  • “DOWTHERM A Heat Transfer Fluid, Product Technical Data.” [Online]. Available: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0030/0901b803800303cd.pdf. Accessed: Mar. 14, 2019.
  • J. Pereira Da Cunha and P. Eames, “Thermal energy storage for low and medium temperature applications using phase change materials – A review,” Appl. Energy., vol. 177, pp. 227–238, Sep. 2016. DOI: 10.1016/j.apenergy.2016.05.097.
  • X. Qu et al., “The Electrolyte Genome project: A big data approach in battery materials discovery,” Comput. Mater. Sci., vol. 103, pp. 56–67, 2015. DOI: 10.1016/j.commatsci.2015.02.050.
  • L. Cheng, et al., “Accelerating electrolyte discovery for energy storage with high-throughput screening,” J. Phys. Chem. Lett., vol. 6, no. 2, 283–291, Jan. 2015. DOI: 10.1021/jz502319n.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.