820
Views
14
CrossRef citations to date
0
Altmetric
Articles

Effect of Evanescent Waves on the Dark Current of Thermophotovoltaic Cells

, , &
Pages 1-19 | Received 29 Aug 2019, Accepted 10 Oct 2019, Published online: 24 Oct 2019

References

  • T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renewable Sustainable Energy Rev., vol. 3, pp. 77–184, 1999. DOI:10.1016/S1364-0321(98)00021-5.
  • S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” Int. J. Energy Res., vol. 31, pp. 689–716, 2007. DOI:10.1002/er.1286.
  • B. Bitnar, W. Durisch, and R. Holzner, “Thermophotovoltaics on the move to applications,” Appl. Energy, vol. 105, pp. 430–438, 2013. DOI:10.1016/j.apenergy.2012.12.067.
  • A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: review and future potential,” Sol. Energy Mater. Sol. Cells, vol. 161, pp. 285–296, 2017. DOI:10.1016/j.solmat.2016.12.007.
  • A. Lenert, et al., “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol., vol. 9, pp. 126–130, 2014. DOI:10.1038/nnano.2013.286.
  • W. R. Chan, et al., “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” PNAS, vol. 110, pp. 5309–5314, 2013. DOI:10.1073/pnas.1301004110.
  • Z. M. Zhang, Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007.
  • S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res., vol. 33, pp. 1203–1232, 2009. DOI:10.1002/er.1607.
  • X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: recent progress and outlook,” Nanoscale Microscale Thermophys. Eng., vol. 19, pp. 98–126, 2015. DOI:10.1080/15567265.2015.1027836.
  • M. P. Bernardi, et al., “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep., vol. 5, pp. 11626, 2015. DOI:10.1038/srep11626.
  • M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conv., vol. 17, pp. 130–142, 2002. DOI:10.1109/60.986450.
  • M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys., vol. 100, pp. 063704, 2006. DOI:10.1063/1.2234560.
  • K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer., vol. 109, pp. 305–316, 2008. DOI:10.1016/j.jqsrt.2007.08.022.
  • M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conv., vol. 26, pp. 686–698, 2011. DOI:10.1109/TEC.2011.2118212.
  • O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express, vol. 20, pp. A366–A384, 2012. DOI:10.1364/OE.20.00A366.
  • R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep., vol. 3, pp. 1383, 2013. DOI:10.1038/srep01383.
  • T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer, vol. 136, pp. 062701, 2014. DOI:10.1115/1.4026455.
  • J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘thermal well’ emitters and absorbers for high-efficiency thermophotovoltaics,” Sci. Rep., vol. 5, pp. 10661, 2015. DOI:10.1038/srep10661.
  • K. Chen, P. Santhanam, and S. Fan, “Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery,” Appl. Phys. Lett., vol. 107, pp. 091106, 2015. DOI:10.1063/1.4929949.
  • J. I. Watjen, X. L. Liu, B. Zhao, and Z. M. Zhang, “A computational simulation of using tungsten gratings in near-field thermophotovoltaic devices,” J. Heat Transfer, vol. 139, pp. 052704, 2017. DOI:10.1115/1.4035356.
  • R. S. Dimatteo, et al., “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett., vol. 79, pp. 1894–1896, 2001. DOI:10.1063/1.1400762.
  • K. Hanamura and K. Mori, “Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface,” AIP Conf. Proc., vol. 890, pp. 291–296, 2007. DOI:10.1063/1.2711747.
  • A. Fiorino, et al., “Nanogap near-field thermophotovoltaics,” Nat. Nanotechnol., vol. 13, pp. 806–811, 2018. DOI:10.1038/s41565-018-0172-5.
  • J. I. Watjen, B. Zhao, and Z. M. Zhang, “Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm,” Appl. Phys. Lett., vol. 109, pp. 203112, 2016. DOI:10.1063/1.4967384.
  • M. P. Bernardi, D. Milovich, and M. Francoeur, “Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap,” Nat. Commun., vol. 7, pp. 12900, 2016. DOI:10.1038/ncomms12900.
  • K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett., vol. 17, pp. 4347–4353, 2017. DOI:10.1021/acs.nanolett.7b01422.
  • M. Ghashami, et al., “Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients,” Phys. Rev. Lett., vol. 120, pp. 175901, 2018. DOI:10.1103/PhysRevLett.120.175901.
  • M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun., vol. 9, pp. 4302, 2018. DOI:10.1038/s41467-018-06795-w.
  • J. Yang, et al., “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun., vol. 9, pp. 4033, 2018. DOI:10.1038/s41467-018-06163-8.
  • J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys., vol. 107, pp. 093106, 2010. DOI:10.1063/1.3419716.
  • K. Chen, P. Santhanam, and S. Fan, “Near-field enhanced negative luminescent refrigeration,” Phys. Rev. Appl., vol. 6, pp. 024014, 2016. DOI:10.1103/PhysRevApplied.6.024014.
  • X. Liu and Z. M. Zhang, “High-performance electroluminescent refrigeration enabled by photon tunneling,” Nano Energy, vol. 26, pp. 353–359, 2016. DOI:10.1016/j.nanoen.2016.05.049.
  • T. P. Xiao, K. Chen, P. Santhanam, S. Fan, and E. Yablonovitch, “Electroluminescent refrigeration by ultra-efficient GaAs light-emitting diodes,” J.Appl. Phys., vol. 123, pp. 173104, 2018. DOI:10.1063/1.5019764.
  • W.-C. Hsu, et al., “Entropic and near-field improvements of thermoradiative cells,” Sci. Rep., vol. 6, pp. 34837, 2016. DOI:10.1038/srep34837.
  • B. Zhao, P. Santhanam, K. Chen, S. Buddhiraju, and S. Fan, “Near-field thermophotonic systems for low-grade waste-heat recovery,” Nano Lett., vol. 18, pp. 5224–5230, 2018. DOI:10.1021/acs.nanolett.8b02184.
  • C. Lin, B. Wang, K. H. Teo, and Z. M. Zhang, “A coherent description of thermal radiative devices and its application on the near-field negative electroluminescent cooling,” Energy, vol. 147, pp. 177–186, 2018. DOI:10.1016/j.energy.2018.01.005.
  • E. Tervo, E. Bagherisereshki, and Z. M. Zhang, “Near-field radiative thermoelectric energy converters: a review,” Front. Energy, vol. 12, pp. 5–21, 2018. DOI:10.1007/s11708-017-0517-z.
  • W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., vol. 32, pp. 510–519, 1961. DOI:10.1063/1.1736034.
  • S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981.
  • J. Nelson, The Physics of Solar Cells. London: Imperial College Press, 2003.
  • M. Zenker, A. Heinzel, G. Stollwerck, J. Ferber, and J. Luther, “Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells,” IEEE Trans. Electron Dev., vol. 48, pp. 367–376, 2001. DOI:10.1109/16.902740.
  • P. Wurfel, “The chemical potential of radiation,” J. Phys. C: Solid State Phys., vol. 15, pp. 3967–3985, 1982. DOI:10.1088/0022-3719/15/18/012.
  • C. Lin, B. Wang, K. H. Teo, and Z. M. Zhang, “Performance comparison between photovoltaic and thermoradiative devices,” J. Appl. Phys., vol. 122, pp. 243103, 2017. DOI:10.1063/1.5004651.
  • S. Basu and Z. M. Zhang, “Maximum energy transfer in near-field thermal radiation at nanometer distances,” J. Appl. Phys., vol. 105, pp. 093535, 2009. DOI:10.1063/1.3125453.
  • S. Jin, M. Lim, S. S. Lee, and B. J. Lee, “Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap,” Opt. Express, vol. 24, pp. A635–A649, 2016. DOI:10.1364/OE.24.00A635.
  • E. D. Palik. Handbook of Optical Constants of Solids, Vols. 1–3, San Diego:Academic Press, 1998.
  • S. Adachi, “Material parameters of In1−xGaxAsyP1−y and related binaries,” J. Appl. Phys., vol. 53, pp. 8775–8792, 1982. DOI:10.1063/1.330480.
  • M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1305–1310, 2008. DOI:10.1016/j.solmat.2008.06.009.
  • N. M. Ravindra and B. Prasad, “Saturation current in solar cells: an analysis,” Solar Cells, vol. 2, pp. 109–113, 1980. DOI:10.1016/0379-6787(80)90004-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.