283
Views
4
CrossRef citations to date
0
Altmetric
Articles

The heating of magnetic nanoparticles in a rotating magnetic field

ORCID Icon, &
Pages 20-28 | Received 10 Jul 2019, Accepted 30 Oct 2019, Published online: 12 Nov 2019

References

  • Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D., vol. 42, pp. 224001, 2009. DOI: 10.1088/0022-3727/42/22/224001.
  • S. Dutz and R. Hergt, “Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy,” Int. J. Hyperther., vol. 29, pp. 790–800, 2013. DOI: 10.3109/02656736.2013.822993.
  • E. A. Périgo et al., “Fundamentals and advances in magnetic hyperthermia,” Appl. Phys., vol. 2, pp. 041302, 2015. DOI: 10.1063/1.4935688.
  • R. Hergt et al., “Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools,” J. Magn. Magn. Mater., vol. 293, pp. 80–86, 2005. DOI: 10.1016/j.jmmm.2005.01.047.
  • B. Mehdaoui et al., “Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study,” Adv. Funct. Mater., vol. 21, pp. 4573–4581, 2011. DOI: 10.1002/adfm.201101243.
  • S. Dutz, M. Kettering, I. Hilger, R. Muller, and M. Zeisberger, “Magnetic multicore nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on magnetic properties,” Nanotechnology, vol. 22, pp. 265102, 2011. DOI: 10.1088/0957-4484/22/26/265102.
  • P. Guardia et al., “Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment,” ACS Nano, vol. 6, pp. 3080−3091, 2012. DOI: 10.1021/nn2048137.
  • S. A. Gudoshnikov, B. Y. Liubimov, A. V. Popova, and N. A. Usov, “The influence of a demagnetizing field on hysteresis losses in a dense assembly of superparamagnetic nanoparticles,” J. Magn. Magn. Mater., vol. 324, pp. 3690, 2012. DOI: 10.1016/j.jmmm.2012.05.049.
  • C. Martinez-Boubeta et al., “Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO Core–Shell nanoparticles by tuning dipole–dipole interactions,” Adv. Funct. Mater., vol. 22, pp. 3737–3744, 2012. DOI: 10.1002/adfm.201200307.
  • C. Martinez-Boubeta et al., “Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications,” Sci. Rep., vol. 3, pp. 1652, 2013. DOI: 10.1038/srep01652.
  • L. C. Branquinho et al., “Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia,” Sci. Rep., vol. 3, pp. 2887, 2013. DOI: 10.1038/srep02887.
  • R. Di Corato et al., “Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs,” Biomaterials, vol. 35, pp. 6400–6411, 2014. DOI: 10.1016/j.biomaterials.2014.04.036.
  • M. E. Materia et al., “Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents,” Langmuir, vol. 31, pp. 808–816, 2015. DOI: 10.1021/la503930s.
  • C. Blanco-Andujar, D. Ortega, P. Southern, Q. A. Pankhurst, and N. T. K. Thanh, “High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions,” Nanoscale, vol. 7, pp. 1768–1775, 2015. DOI: 10.1039/c4nr06239f.
  • A. Espinosa et al., “Magnetic (hyper)thermia or photo-thermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo,” Adv. Funct. Mater., vol. 28, pp. 1803660, 2018. DOI: 10.1002/adfm.201803660.
  • D. Bonvin et al., “Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve MRI relaxivity and SAR,” Nanomaterials, vol. 7, no. 8, pp. 225, 2017. DOI: 10.3390/nano7080225.
  • U. M. Engelmanna, C. Shashac, E. Teeman, I. Slabu, and K. M. Krishnan, “Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Neel-Brown Langevin simulation,” J. Magn. Magn. Mater., vol. 471, pp. 450–456, 2019. DOI: 10.1016/j.jmmm.2018.09.041.
  • N. A. Usov, “Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy,” J. Appl. Phys., vol. 107, pp. 123909, 2010. DOI: 10.1063/1.3445879.
  • J. Carrey, B. Mehdaoui, and M. Respaud, “Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization,” J. Appl. Phys., vol. 109, pp. 083921, 2011. DOI: 10.1063/1.3551582.
  • M. L. Etheridge et al., “Accounting for biological aggregation in heating and imaging of magnetic nanoparticles,” Technology, vol. 2, pp. 214–228, 2014. DOI: 10.1142/S2339547814500198.
  • S. Jeon, K. R. Hurley, J. C. Bischof, C. L. Haynes, and C. J. Hogan Jr., “Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate,” Nanoscale, vol. 8, pp. 16053–16064, 2016. DOI: 10.1039/C6NR04042J.
  • B. Sanz et al., “In silico before in vivo: how to predict the heating efficiency of magnetic nanoparticles within the intracellular space,” Sci. Rep., vol. 6, pp. 38733, 2016. DOI: 10.1038/srep38733.
  • S. Ruta, R. Chantrell, and O. Hovorka, “Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles,” Sci. Rep., vol. 5, pp. 9090, 2015. DOI: 10.1038/srep09090.
  • N. A. Usov, O. N. Serebryakova, and V. P. Tarasov, “Interaction effects in assembly of magnetic nanoparticles,” Nanoscale Res. Lett., vol. 12, pp. 489, 2017. DOI: 10.1186/s11671-017-2263-x.
  • J. Dieckhoff, A. Lak, M. Schilling, and F. Ludwig, “Protein detection with magnetic nanoparticles in a rotating magnetic field,” J. Appl. Phys., vol. 115, pp. 024701, 2014. DOI: 10.1063/1.4861032.
  • M. Beković, M. Trlep, M. Jesenik, and A. Hamler, “A comparison of the heating effect of magnetic fluid between the alternating and rotating magnetic field,” J. Magn. Magn. Mater., vol. 355, pp. 7–12, 2014. DOI: 10.1016/j.jmmm.2013.11.045.
  • P. W. Egolf et al., “Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction,” J. Appl. Phys., vol. 120, pp. 064304, 2016. DOI: 10.1063/1.4960406.
  • M. Beković et al., “Magnetic fluids’ heating power exposed to a high frequency rotating magnetic field,” Adv. Mater. Sci. Eng., 2018. Article ID 6143607. DOI: 10.1155/2018/6143607.
  • J. Carrey and N. Hallali, “Torque undergone by assemblies of single-domain magnetic nanoparticles submitted to a rotating magnetic field,” Phys. Rev. B, vol. 94, pp. 184420, 2016. DOI: 10.1103/PhysRevB.94.184420.
  • K. D. Usadel, “Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating magnetic fields,” Phys. Rev. B, vol. 95, pp. 104430, 2017. DOI: 10.1103/PhysRevB.95.104430.
  • W. F. J. Brown, “Thermal fluctuations of a single-domain particle,” Phys. Rev., vol. 130, pp. 1677, 1963. DOI: 10.1103/PhysRev.130.1677.
  • J. L. Garcia-Palacios and F. J. Lazaro, “Langevin-dynamics study of the dynamical properties of small magnetic particles,” Phys. Rev. B, vol. 58, pp. 14937–14958, 1998. DOI: 10.1103/PhysRevB.58.14937.
  • W. Scholz, T. Schrefl, and J. Fidler, “Micromagnetic simulation of thermally activated switching in fine particles,” J. Magn. Magn. Mater., vol. 233, pp. 296–304, 2001. DOI: 10.1016/S0304-8853(01)00032-4.
  • W. T. Coffey, Y. P. Kalmykov, and J. T. Waldron, The Langevin Equation, Vol. 14, 2nd ed. Singapore: World Scientific Series in Contemporary Chemical Physics, 2004, pp. 704.
  • L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. New York: Pergamon, 1984.
  • S. R. Forrest and T. A. Witten Jr, “Long-range correlations in smoke-particle aggregates,” J. Phys. A., vol. 12, pp. L109– L117, 1979. DOI: 10.1088/0305-4470/12/5/008.
  • A. V. Filippov, M. Zurita, and D. E. Rosner, “Fractal-like aggregates: relation between morphology and physical properties,” J. Colloid Interface Sci., vol. 229, pp. 261–273, 2000. DOI: 10.1006/jcis.2000.7027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.