420
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Pool Boiling Performance of Microchannel Patterned Surface with Extremely Low Wall Superheat through Capillary Feeding of Liquid

ORCID Icon, , , &
Pages 66-79 | Received 02 Jan 2020, Accepted 14 Mar 2020, Published online: 11 Apr 2020

References

  • E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Res., vol. 3, no. 3, pp. 147–169, 2010. DOI: 10.1007/s12274-010-1019-z.
  • J. L. Rempe, K. Y. Suh, F. B. Cheung, and S. B. Kim, “In-vessel retention of molten corium: lessons learned and outstanding issues,” Nucl. Technol., vol. 161, no. 3, pp. 210–267, 2008. DOI: 10.13182/NT08-A3924.
  • S. Krishnan, S. V. Garimella, G. M. Chrysler, and R. V. Mahajan, “Towards a thermal Moore’s law,” IEEE Trans. Adv. Packag., vol. 30, no. 3, pp. 462–474, 2007. DOI: 10.1109/TADVP.2007.898517.
  • B. Agostini, et al., “State of the art of high heat flux cooling technologies,” Heat Transfer Eng., vol. 28, no. 4, pp. 258–281, 2007. DOI: 10.1080/01457630601117799.
  • I. Mudawar and T. M. Anderson, “Optimization of enhanced surfaces for high flux chip cooling by pool boiling,” vol. 115, pp. 89–100, 1983. DOI: 10.1115/1.2909306.
  • Z. J. Zuo, M. T. North, and K. L. Wert, “High heat flux heat pipe mechanism for cooling of electronics,” IEEE Trans. Compon. Packag. Technol., vol. 24, pp. 220–225, 2001. DOI:10.1109/6144.926386.
  • J. S. Kim, et al., “Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces,” Int. J. Heat Mass Tran., vol. 118, pp. 802–811, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.124.
  • R. Li and Z. Huang, “A new CHF model for enhanced pool boiling heat transfer on surfaces with micro-scale roughness,” Int. J. Heat Mass Tran., vol. 109, pp. 1084–1093, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.02.089.
  • G. Chen and C. H. Li, “Combined effects of liquid wicking and hydrodynamic instability on pool boiling critical heat flux by two-tier copper structures of nanowires and microgrooves,” Int. J. Heat Mass Tran., vol. 129, pp. 1222–1231, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.10.002.
  • R. K. Gouda, M. Pathak, and M. K. Khan, “Pool boiling heat transfer enhancement with segmented finned microchannels structured surface,” Int. J. Heat Mass Tran., vol. 127, pp. 39–50, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.06.115.
  • G. Bamorovat Abadi and K. C. Kim, “Experimental heat transfer and pressure drop in a metal-foam-filled tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 82, pp. 42–49, 2017. DOI:10.1016/j.expthermflusci.2016.10.031.
  • Z. G. Xu and J. Qin, “Pool boiling investigation on gradient metal foams with double layers,” Appl. Therm. Eng., vol. 131, pp. 595–606, 2018. DOI:10.1016/j.applthermaleng.2017.12.040.
  • R. Pastuszko, “Pool boiling heat transfer on micro-fins with wire mesh – experiments and heat flux prediction,” Int. J. Therm. Sci., vol. 125, pp. 197–209, 2018. DOI:10.1016/j.ijthermalsci.2017.11.019.
  • H. S. Jo, et al., “Supersonically spray-coated copper meshes as textured surfaces for pool boiling,” Int. J. Therm. Sci., vol. 132, pp. 26–33, 2018. DOI: 10.1016/j.ijthermalsci.2018.05.041.
  • S. Mori, S. Mt Aznam, and K. Okuyama, “Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate,” Int. J. Heat Mass Tran., vol. 80, pp. 1–6, 2015. DOI:10.1016/j.ijheatmasstransfer.2014.08.046.
  • A. Joseph, et al., “An experimental investigation on pool boiling heat transfer enhancement using sol-gel derived nano-CuO porous coating,” Exp. Therm. Fluid Sci., vol. 103, pp. 37–50, 2019. DOI: 10.1016/j.expthermflusci.2018.12.033.
  • L. Bai, L. Zhang, G. Lin, and G. P. Peterson, “Pool boiling with high heat flux enabled by a porous artery structure,” Appl. Phys. Lett., vol. 108, no. 23, pp. 233901, 2016. DOI: 10.1063/1.4953574.
  • R. Chen, et al., “Nanowires for enhanced boiling heat transfer,” Nano Lett., vol. 9, no. 2, pp. 548–553, 2009. DOI: 10.1021/nl8026857.
  • C. Li, et al., “Nanostructured copper interfaces for enhanced boiling,” Small, vol. 4, no. 8, pp. 1084–1088, 2008. DOI: 10.1002/smll.200700991.
  • A. R. Betz, J. Jenkins, C. C. Kim, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Tran., vol. 57, no. 2, pp. 733–741, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • H. T. Phan, et al., “Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism,” Int. J. Heat Mass Tran., vol. 52, no. 23–24, pp. 5459–5471, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.06.032.
  • B. Shen, et al., “Enhanced pool boiling of ethanol on wettability-patterned surfaces,” Appl. Therm. Eng., vol. 149, pp. 325–331, 2019. DOI: 10.1016/j.applthermaleng.2018.12.049.
  • A. Jaikumar and S. G. Kandlikar, “Pool boiling inversion through bubble induced macroconvection,” Appl. Phys. Lett., vol. 110, no. 9, pp. 94107, 2017. DOI: 10.1063/1.4977557.
  • B. B. Mikic and W. M. Rohsenow, “A new correlation of pool-boiling data including the effect of heating surface characteristics,” ASME J. Heat, vol. 91, no. 2, pp.245–250, 1969. DOI: 10.1115/1.3580136.
  • D. Cooke and S. G. Kandlikar, “Effect of open microchannel geometry on pool boiling enhancement,” Int. J. Heat Mass Tran., vol. 55, no. 4, pp. 1004–1013, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.010.
  • D. Cooke and S. G. Kandlikar, “Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels,” ASME J. Heat Transfer, vol. 133, pp. 52902, 2011. DOI:10.1115/1.4003046.
  • C. M. Patil and S. G. Kandlikar, “Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels,” Int. J. Heat Mass Tran., vol. 79, pp. 816–828, 2014. DOI:10.1016/j.ijheatmasstransfer.2014.08.063.
  • A. Jaikumar and S. G. Kandlikar, “Pool boiling enhancement through bubble induced convective liquid flow in feeder microchannels,” Appl. Phys. Lett., vol. 108, no. 4, pp. 41604, 2016. DOI: 10.1063/1.4941032.
  • R. Wen, et al., “Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays,” Nano Energy, vol. 38, pp. 59–65, 2017. DOI: 10.1016/j.nanoen.2017.05.028.
  • C. Hsu and P. Chen, “Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings,” Int. J. Heat Mass Tran., vol. 55, no. 13–14, pp. 3713–3719, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.003.
  • A. R. Betz, J. Xu, H. Qiu, and D. Attinger, “Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?” Appl. Phys. Lett., vol. 97, no. 14, pp. 141909, 2010. DOI: 10.1063/1.3485057.
  • H. Jo, et al., “Boiling on spatially controlled heterogeneous surfaces: wettability patterns on microstructures,” Appl. Phys. Lett., vol. 106, no. 18, pp. 181602, 2015. DOI: 10.1063/1.4919916.
  • C. M. Patil, K. S. V. Santhanam, and S. G. Kandlikar, “Development of a two-step electrodeposition process for enhancing pool boiling,” Int. J. Heat Mass Tran., vol. 79, pp. 989–1001, 2014. DOI:10.1016/j.ijheatmasstransfer.2014.08.062.
  • S. Hong, et al., “Visualization investigation of the effects of nanocavity structure on pool boiling enhancement,” Int. J. Heat Mass Tran., vol. 136, pp. 235–245, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.001.
  • N. Youngsuk, W. Jinfeng, W. Gopinath, and J. Y. Sungtaek, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface,” vol. 131, no. 12, pp. 121004–121007, 2009. DOI: 10.1115/1.3216038.
  • R. Wen, X. Ma, Y. Lee, and R. Yang, “Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond,” Joule, vol. 2, no. 11, pp. 2307–2347, 2018. DOI: 10.1016/j.joule.2018.08.014.
  • M. Jakob and W. Fritz, “Versuche tiber den Verdampfungsvorgang,” Forschung auf dem Gebiete des Ingenieurwesens, vol. 2, no. 12, pp. 435–447, 1931. DOI: 10.1007/BF02578808.
  • I. G. Malenkov, “Detachment frequency as a function of size for vapor bubbles,” J. Eng. Phys. Thermophys., vol. 20, no. 6, pp. 704–708, 1971. DOI: 10.1007/BF01122590.
  • J. W. Westwater, “Development of extended surfaces for use in boiling liquids,” AIChE Symp. Ser., vol. 69, pp. 1–9, 1973.
  • A. Jaikumar, T. S. Emery, and S. G. Kandlikar, “Interplay between developing flow length and bubble departure diameter during macroconvection enhanced pool boiling,” Appl. Phys. Lett., vol. 112, no. 7, pp. 71603, 2018. DOI: 10.1063/1.5016307.
  • S. G. Kandlikar, “Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer,” Appl. Phys. Lett., vol. 102, no. 5, pp. 51611, 2013. DOI: 10.1063/1.4791682.
  • R. L. Mohanty and M. K. Das, “A critical review on bubble dynamics parameters influencing boiling heat transfer,” Renewable Sustainable Energy Rev., vol. 78, pp. 466–494, 2017. DOI:10.1016/j.rser.2017.04.092.
  • L. H. Chien and R. L. Webb, “Measurement of bubble dynamics on an enhanced boiling surface,” Exp Therm Fluid Sci, 1998. DOI: 10.1016/S0894-1777(97)10017-6.
  • S. J. Thiagarajan, R. Yang, C. King, and S. Narumanchi, “Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces,” Int. J. Heat Mass Tran., vol. 89, pp. 1297–1315, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.06.013.
  • Y. Y. Hsu, “On the size range of active nucleation sites on a heating surface,” J. Heat. Transf., vol. 84, no. 3, pp. 207–213, 1962. DOI: 10.1115/1.3684339.
  • S. W. Tchikanda, R. H. Nilson, and S. K. Griffiths, “Modeling of pressure and shear-driven flows in open rectangular microchannels,” Int. J. Heat Mass Tran., vol. 47, no. 3, pp. 527–538, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.03.001.
  • I. S. Kiyomura, T. S. Mogaji, L. L. Manetti, and E. M. Cardoso, “A predictive model for confined and unconfined nucleate boiling heat transfer coefficient,” Appl. Therm. Eng., vol. 127, pp. 1274–1284, 2017. DOI:10.1016/j.applthermaleng.2017.08.135.
  • Z. G. Xu and C. Y. Zhao, “Pool boiling heat transfer of open-celled metal foams with V-shaped grooves for high pore densities,” Exp. Therm. Fluid Sci., vol. 52, pp. 128–138, 2014. DOI:10.1016/j.expthermflusci.2013.09.003.
  • Z. G. Xu and C. Y. Zhao, “Thickness effect on pool boiling heat transfer of trapezoid-shaped copper foam fins,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 359–370, 2013. DOI: 10.1016/j.applthermaleng.2013.07.013.
  • D. E. Kim, et al., “Enhanced critical heat flux by capillary driven liquid flow on the well-designed surface,” Appl. Phys. Lett., vol. 107, no. 2, pp. 23903, 2015. DOI: 10.1063/1.4926971.
  • W. Zhang, et al., “3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement,” Appl. Surf. Sci., vol. 457, pp. 891–901, 2018. DOI: 10.1016/j.apsusc.2018.07.021.
  • A. M. Gheitaghy, A. Samimi, and H. Saffari, “Surface structuring with inclined minichannels for pool boiling improvement,” Appl. Therm. Eng., vol. 126, pp. 892–902, 2017. DOI:10.1016/j.applthermaleng.2017.07.200.
  • G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Tran., vol. 128, pp. 892–933, 2019. DOI:10.1016/j.ijheatmasstransfer.2018.09.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.