339
Views
7
CrossRef citations to date
0
Altmetric
Articles

Coupling Mesoscopic Boltzmann Transport Equation and Macroscopic Heat Diffusion Equation for Multiscale Phonon Heat Conduction

, & ORCID Icon
Pages 150-167 | Received 08 Jun 2020, Accepted 01 Oct 2020, Published online: 06 Nov 2020

References

  • J. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids. Oxford University Press, 1961.
  • Microscale and Nanoscale Heat Transfer - Topics in Applied Physics, Vol. 107. (ed. Volz, S.) Springer Verlag, 2007.
  • P. O. Chapuis, “Chapter 3: introduction to heat transfer at the nanoscale”, in Thermometry at the Nanoscale: Techniques and Selected Applications, L. D. Carlos and F. Palacio, Eds.. RSC Publishing, 2016. DOI: 10.1039/9781782622031-00039.
  • G. Chen, Nanoscale Energy Transport and Conversion. Oxford Engineering Science Series/MIT-Pappalardo Series in Mechanical Engineering, 2005.
  • Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett., vol. 74, pp. 3005, 1999.
  • S. Hamian, T. Yamada, M. Faghri, and K. Park, “Finite element analysis of transient ballistic–diffusive phonon heat transport in two-dimensional domains,” Int. J. Heat Mass Transfer, vol. 80, pp. 781–788, 2015.
  • D. Lacroix, K. Joulain, and D. Lemonnier, “Monte Carlo transient phonon transport in silicon and germanium at nanoscales,” Phys. Rev. B, vol. 72, pp. 64305, 2005.
  • J. Randrianalisoa and D. Baillis, “Monte carlo simulation of steady-state microscale phonon heat transport,” J. Heat Transfer, vol. 130, pp. 072404, 2008.
  • B. T. Wong, M. Francoeur, M. Pinar Mengüç, and A. Monte, “Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation,” Int. J. Heat Mass Transfer, vol. 54, pp. 1825–1838, 2011.
  • J. Murthy, et al., “Review of multiscale simulation in submicron heat transfer,” Int. J. Multiscale Comput. Eng., vol. 3, pp. 5–32, 2005. DOI: 10.1615/IntJMultCompEng.v3.i1.20.
  • A. Mittal and S. Mazumder, “Generalized ballistic-diffusive formulation and hybrid SN-PN solution of the Boltzmann Transport Equation for phonons for nonequilibrium heat conduction,” J. Heat Transfer, vol. 133, pp. 92402, 2011. DOI: 10.1115/1.4003961.
  • A. Mittal and S. Mazumder, “Hybrid discrete ordinates—spherical harmonics solution to the Boltzmann Transport Equation for phonons for non-equilibrium heat conduction,” J. Comput. Phys., vol. 230, pp. 6977–7001, 2011. DOI: 10.1016/j.jcp.2011.05.024.
  • S. Volz, J.-B. Saulnier, and D. Lemonnier, “Clamped nanowire thermal conductivity based on phonon transport equation,” Microscale Thermophys. Eng., vol. 5, pp. 191–207, 2001.
  • D. Terris, K. Joulain, D. Lemonnier, and D. Lacroix, “Modeling semiconductor nanostructures thermal properties: the dispersion role,” J. Appl. Phys., vol. 105, pp. 73516, 2009. DOI: 10.1063/1.3086409.
  • A. Majumdar, “Microscale heat conduction in dielectric thin films,” J. Heat Transfer, vol. 115, pp. 7–16, 1993. DOI: 10.1115/1.2910673.
  • G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett., vol. 86, pp. 2297–2300, 2001. DOI: 10.1103/PhysRevLett.86.2297.
  • C. Zhang, S. Chen, and Z. Guo, “An implicit kinetic scheme for multiscale heat transfer problem accounting for phonon dispersion and polarization,” Int. J. Heat Mass Transfer, pp. 1366–1376, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.141.
  • X.-P. Luo, Y.-F. Zhao, and H.-L. Yi, “Multiscale phonon transport simulations by a discrete ordinate method with streaming and collision processes,” Numer. Heat Transf. Part A Appl., vol. 75, pp. 381–401, 2019. DOI: 10.1080/10407782.2019.1599271.
  • J. M. Loy, J. Y. Murthy, and D. Singh, “A fast hybrid Fourier–Boltzmann Transport Equation solver for Nongray Phonon Transport,” J. Heat Transfer, vol. 135, pp. 011008, 2012. DOI: 10.1115/1.4007654.
  • P. Allu and S. Mazumder, “Hybrid ballistic-diffusive solution to the frequency-dependent phonon Boltzmann Transport Equation,” Int. J. Heat Mass Transfer, vol. 100, pp. 165–177, 2016.
  • A. K. Vallabhaneni, L. Chen, M. P. Gupta, and S. Kumar, “Solving Nongray Boltzmann Transport Equation in Gallium Nitride,” J. Heat Transfer, vol. 139, pp. 102701, 2017. DOI: 10.1115/1.4036616.
  • H.-L. Li, Y.-C. Hua, and B.-Y. Cao, “A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures,” Int. J. Heat Mass Transfer, vol. 127, pp. 1014–1022, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.080.
  • R. Yang, G. Chen, M. Laroche, and Y. Taur, “Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation,” J. Heat Transfer, vol. 127, pp. 298–306, 2005.
  • M. F. Modest, Radiative Heat Transfer, 3rd ed, Academic Press, 2013. DOI: 10.1016/C2010-0-65874-3.
  • D. Lemonnier, “Solution of the Boltzmann Equation for Phonon Transport”, in Microscale and Nanoscale Heat Transfer - Topics in Applied Physics, Vol. 107, Ed., S. Volz. Springer Verlag, 2007, pp. 77–106.
  • B. G. Carlson, “Transport theory-The method of discrete ordinates”, in Computing Methods in Reactor Physics, Gordon and Breach, Eds. 1968.
  • C. Weizheng, “Thermal dissipation at the nanoscale and impact on mechanical stress”, Master thesis, Ecole Centrale Nantes, 2019.
  • P. O. Chapuis, T. T. T. Nghiem, C. A. Da Cruz, and E. Nefzaoui, “Thermal transport phenomena beyond the diffusive regime”, in Proceedings of the 23rd International Conference Mixed Design of Integrated Circuits and Systems, MIXDES, 2016. DOI: 10.1109/MIXDES.2016.7529695.
  • M. E. Siemens, et al., “Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams,” Nat. Mater., vol. 9, pp. 26–30, 2010. DOI: 10.1038/nmat2568.
  • W. Jaber, “Phonon heat conduction probed by means of an electro-thermal method involving deposited micro and nanowires”, PhD thesis, INSA Lyon, 2016. Available: http://www.theses.fr/2016LYSEI109.
  • A. Ziabari, et al., “Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices,” Nat. Commun., vol. 9, pp. 255, 2018.
  • A. J. Minnich, “Multidimensional quasiballistic thermal transport in transient grating spectroscopy,” Phys. Rev. B, vol. 92, pp. 85203, 2015. DOI: 10.1103/PhysRevB.92.085203.
  • Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, and G. Chen, “Spectral mapping of thermal conductivity through nanoscale ballistic transport,” Nat. Nanotechnol., vol. 10, pp. 701–706, 2015. DOI: 10.1038/nnano.2015.109.
  • W. Jaber and P. O. Chapuis, “Non-idealities in the 3ω method for thermal characterization in the low- and high-frequency regimes,” AIP Adv., vol. 8, pp. 045111, 2018. DOI: 10.1063/1.5027396.
  • G. Wexler, “The size effect and the non-local Boltzmann transport equation in orifice and disk geometry,” Proc. Phys. Soc., vol. 89, pp. 927–941, 1966. DOI: 10.1088/0370-1328/89/4/316.
  • J. C. Chai, H. S. Lee, and S. V. Patankar, “Ray effect and false scattering in the discrete ordinates method,” Numer. Heat Transf. Part B Fundam., vol. 24, pp. 373–389, 1993. DOI: 10.1080/10407799308955899.
  • A. L. Moore and L. Shi, “Emerging challenges and materials for thermal management of electronics,” Mater. Today, vol. 17, pp. 163–174, 2014. DOI: 10.1016/j.mattod.2014.04.003.
  • T. T. T. Nghiem and J. Randrianalisoa, Private communication.
  • R. Blish and N. Durrant, eds., Semiconductor Device Reliability Failure Models. International SEMATECH Report on Technology Transfer 00053955A-XFR 2000.
  • E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Res, vol. 3, pp. 147–169, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.