354
Views
10
CrossRef citations to date
0
Altmetric
Article

Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup

ORCID Icon, ORCID Icon & ORCID Icon
Pages 25-45 | Received 28 Sep 2020, Accepted 02 Dec 2020, Published online: 29 Dec 2020

References

  • S. Chapman, T. G. Cowling, and D. Burnett, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, 1990.
  • V. P. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. CRC Press, 2018.
  • A. P. Kryukov and V. Y. Levashov, “About evaporation–condensation coefficients on the vapor–liquid interface of high thermal conductivity matters,” Int. J. Heat Mass Tran., vol. 54, no. 13–14, pp.3042–3048, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.042.
  • R. Marek and J. Straub, “Analysis of the evaporation coefficient and the condensation coefficient of water,” Int. J. Heat Mass Tran., vol. 44, no. 1, pp.39–53, 2001. DOI: 10.1016/S0017-9310(00)00086-7.
  • A. H. Persad and C. A. Ward, “Expressions for the evaporation and condensation coefficients in the hertz-knudsen relation,” Chem. Rev., vol. 116, no. 14, pp.7727–7767, 2016. DOI: 10.1021/acs.chemrev.5b00511.
  • H. Hertz, “Ueber die verdunstung der flüssigkeiten, insbesondere des quecksilbers, im luftleeren raume,” Ann. Phys., vol. 253, pp. 177–193, 1882. DOI: 10.1002/andp.18822531002.
  • R. W. Schrage. A theoretical study of interphase mass transfer. PhD thesis, Columbia University Press, 1953.
  • G. Standart and Z. Cihla, “Interphase transport processes. i. schrage’s theories,” Collect. Czech Chem. C, vol. 23, no. 9, pp.1608–1618, 1958. DOI: 10.1135/cccc19581608.
  • K. Yasuoka and M. Matsumoto, “Evaporation and condensation at a liquid surface. i. argon,” J. Chem. Phys, vol. 101, no. 9, pp.7904–7911, 1994. DOI: 10.1063/1.468216.
  • M. Matsumoto and K. Yasuoka, “Evaporation and condensation at a liquid surface. ii. methanol,” J. Chem. Phys., vol. 101, no. 9, pp.7912–7917, 1994. DOI: 10.1063/1.468217.
  • G. Nagayama and T. Tsuruta, “A general expression for the condensation coefficient based on the transition state theory and molecular dynamics simulation,” J. Chem. Phys., vol. 118, no. 3, pp.1392–1399, 2003. DOI: 10.1063/1.1528192.
  • R. Meland, A. Frezzotti, T. Ytrehus, and B. Hafskjold, “Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase,” Phys. Fluids, vol. 16, no. 2, pp.223–243, 2004. DOI: 10.1063/1.1630797.
  • S. H. Algie, “Kinetic theories of evaporation,” J. Chem. Phys., vol. 69, no. 2, pp.538–543, 1978. DOI: 10.1063/1.436644.
  • I. W. Eames, N. J. Marr, and H. Sabir, “The evaporation coefficient of water: a review,” Int. J. Heat Mass Tran., vol. 40, pp. 2963–2973, 1997. DOI: 10.1016/S0017-9310(96)00339-0.
  • M. Knudsen, “Maximum rate of vaporization of mercury,” Ann. Phys., vol. 47, pp. 697–705, 1915. DOI: 10.1002/andp.19153521306.
  • T. K. Xia and U. Landman, “Molecular evaporation and condensation of liquid n-alkane films,” J. Chem. Phys., vol. 101, no. 3, pp.2498–2507, 1994. DOI: 10.1063/1.467689.
  • M. Matsumoto, “Molecular dynamics of fluid phase change,” Fluid Phase Equilib, vol. 144, no. 1–2, pp.307–314, 1998. DOI: 10.1016/S0378-3812(97)00274-4.
  • S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii, and S. P. Malyshenko, “Properties of a liquid–gas interface at high-rate evaporation,” J. Chem. Phys., vol. 110, no. 17, pp.8722–8729, 1999. DOI: 10.1063/1.478779.
  • R. Hołyst, M. Litniewski, and D. Jakubczyk, “A molecular dynamics test of the hertz–knudsen equation for evaporating liquids,” Soft Matter, vol. 11, pp. 7201–7206, 2015. DOI: 10.1039/C5SM01508A.
  • J. Barrett and C. Clement, “Kinetic evaporation and condensation rates and their coefficients,” J. Colloid Interf. Sci., vol. 150, no. 2, pp.352–364, 1992. DOI: 10.1016/0021-9797(92)90205-Z.
  • T. Tsuruta and G. Nagayama, “A microscopic formulation of condensation coefficient and interface transport phenomena,” Energy, vol. 30, no. 6, pp.795–805, 2005. DOI: 10.1016/j.energy.2004.04.011.
  • S. Cheng, J. B. Lechman, S. J. Plimpton, and G. S. Grest, “Evaporation of lennard-jones fluids,” J. Chem. Phys., vol. 134, pp. 224704, 2011. DOI: 10.1063/1.3595260.
  • K. Yasuoka, M. Matsumoto, and Y. Kataoka, “Dynamics near a liquid surface: mechanisms of evaporation and condensation,” J. Mol. Liq., vol. 65–66, pp. 329–332, 1995. DOI: 10.1016/0167-7322(95)00892-0.
  • T. Tsuruta, H. Tanaka, and T. Masuoka, “Condensation/evaporation coefficient and velocity distributions at liquid–vapor interface,” Int. J. Heat Mass Tran., vol. 42, no. 22, pp.4107–4116, 1999. DOI: 10.1016/S0017-9310(99)00081-2.
  • A. Røsjorde, S. Kjelstrup, D. Bedeaux, and B. Hafskjold, “Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in condensation. ii. transfer coefficients,” J. Colloid Interf. Sci., vol. 240, no. 1, pp.355–364, 2001. DOI: 10.1006/jcis.2001.7611.
  • T. Tsuruta and G. Nagayama, “Molecular dynamics studies on the condensation coefficient of water,” J. Phys. Chem. B, vol. 108, no. 5, pp.1736–1743, 2004. DOI: 10.1021/jp035885q.
  • Z. Liang, T. Biben, and P. Keblinski, “Molecular simulation of steady-state evaporation and condensation: validity of the schrage relationships,” Int. J. Heat Mass Tran., vol. 114, pp. 105–114, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.025.
  • D. Fuster, G. Hauke, and C. Dopazo, “Influence of the accommodation coefficient on nonlinear bubble oscillations,” J. Acoust. Soc. Am., vol. 128, no. 1, pp.5–10, 2010. DOI: 10.1121/1.3436520.
  • P. C. Wayner, Y. K. Kao, and L. V. LaCroix, “The interline heat-transfer coefficient of an evaporating wetting film,” Int. J. Heat Mass Tran., vol. 19, pp. 487–492, 1976. DOI: 10.1016/0017-9310(76)90161-7.
  • G. T. Barnes, “The effects of monolayers on the evaporation of liquids,” Adv. Colloid Interfac., vol. 25, pp. 89–200, 1986. DOI: 10.1016/0001-8686(86)80004-5.
  • P. C. Wayner, “The effect of interfacial mass transport on flow in thin liquid films,” Colloid. Surf., vol. 52, pp. 71–84, 1991. DOI: 10.1016/0166-6622(91)80006-A.
  • P. C. Wayner, “Intermolecular forces in phase-change heat transfer: 1998 kern award review,” AIChE J., vol. 45, no. 10, pp.2055–2068, 1999. DOI: 10.1002/aic.690451004.
  • J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner, “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun., vol. 196, no. 5, pp.658–696, 2008. DOI: 10.1080/00986440802569679.
  • R. Hołyst, M. Litniewski, D. Jakubczyk, M. Zientara, and M. Woźniak, “Nanoscale transport of energy and mass flux during evaporation of liquid droplets into inert gas: computer simulations and experiments,” Soft Matter, vol. 9, no. 32, pp.7766–7774, 2013. DOI: 10.1039/c3sm50997d.
  • K. H. Do, S. J. Kim, and S. V. Garimella, “A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick,” Int. J. Heat Mass Tran., vol. 51, pp. 4637–4650, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.02.039.
  • S. Du and Y. H. Zhao, “New boundary conditions for the evaporating thin-film model in a rectangular micro channel,” Int. J. Heat Mass Tran., vol. 54, pp. 3694–3701, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.02.059.
  • Y. Akkuş, H. I. Tarman, B. Çetin, and Z. Dursunkaya, “Two-dimensional computational modeling of thin film evaporation,” Int. J. Therm. Sci., vol. 121, pp. 237–248, 2017. DOI: 10.1016/j.ijthermalsci.2017.07.013.
  • M. Alipour and Z. Dursunkaya, “Limitations of matching condensing film profile on a micro fin with the groove: critical effect of disjoining pressure,” Nanosc. Microsc. Therm., vol. 23, no. 4, pp.289–303, 2019. DOI: 10.1080/15567265.2019.1633712.
  • O. Akdag, Y. Akkus, and Z. Dursunkaya, “On the effect of structural forces on a condensing film profile near a fin-groove corner,” Int. Commun. Heat. Mass., vol. 116, pp. 104686, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104686.
  • G. Fang and C. A. Ward, “Temperature measured close to the interface of an evaporating liquid,” Phys. Rev. E, vol. 59, no. 1, pp.417, 1999. DOI: 10.1103/PhysRevE.59.417.
  • C. A. Ward and D. Stanga, “Interfacial conditions during evaporation or condensation of water,” Phys. Rev. E, vol. 64, no. 5, pp.051509, 2001. DOI: 10.1103/PhysRevE.64.051509.
  • E. J. Davis, “A history and state-of-the-art of accommodation coefficients,” Atmos. Res., vol. 82, no. 3–4, pp.561–578, 2006. DOI: 10.1016/j.atmosres.2006.02.013.
  • K. Bellur, E. F. Médici, C. K. Choi, J. C. Hermanson, and J. S. Allen, “Multiscale approach to model steady meniscus evaporation in a wetting fluid,” Phys. Rev. Fluids, vol. 5, no. 2, pp.024001, 2020. DOI: 10.1103/PhysRevFluids.5.024001.
  • T. Ishiyama, T. Yano, and S. Fujikawa, “Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase,” Phys. Fluids, vol. 16, no. 8, pp.2899–2906, 2004. DOI: 10.1063/1.1763936.
  • R. Hołyst and M. Litniewski, “Evaporation into vacuum: mass flux from momentum flux and the hertz–knudsen relation revisited,” J. Chem. Phys., vol. 130, no. 7, pp.074707, 2009. DOI: 10.1063/1.3077059.
  • G. Nagayama, M. Takematsu, H. Mizuguchi, and T. Tsuruta, “Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid–vapor interface,” J. Chem. Phys., vol. 143, pp. 014706, 2015. DOI: 10.1063/1.4923261.
  • T. Tsuruta, N. Sakamoto, and T. Masuoka, “Condensation process at liquid-vapor interface and condensation coefficient,” Therm. Sci. Eng., vol. 3, pp. 85–90, 1995.
  • M. Matsumoto and Y. Kataoka, “Dynamic processes at a liquid surface of methanol,” Phys. Rev. Lett., vol. 69, no. 26, pp.3782, 1992. DOI: 10.1103/PhysRevLett.69.3782.
  • J. Yu and H. Wang, “A molecular dynamics investigation on evaporation of thin liquid films,” Int. J. Heat Mass Tran., vol. 55, no. 4, pp.1218–1225, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.09.035.
  • Z. Liang and P. Keblinski, “Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas,” J. Chem. Phys., vol. 148, pp. 064708, 2018. DOI: 10.1063/1.5020095.
  • B. Hafskjold and S. K. Ratkje, “Criteria for local equilibrium in a system with transport of heat and mass,” J. Stat. Phys., vol. 78, no. 1–2, pp.463–494, 1995. DOI: 10.1007/BF02183360.
  • Y. Akkus and A. Beskok, “Molecular diffusion replaces capillary pumping in phase-change-driven nanopumps,” Microfluid. Nanofluid., vol. 23, no. 2, pp.14, 2019. DOI: 10.1007/s10404-018-2185-7.
  • Y. Akkus, A. Koklu, and A. Beskok, “Atomic scale interfacial transport at an extended evaporating meniscus,” Langmuir, vol. 35, no. 13, pp.4491–4497, 2019. DOI: 10.1021/acs.langmuir.8b04219.
  • Y. Akkus, C. T. Nguyen, A. T. Celebi, and A. Beskok, “A first look at the performance of nano-grooved heat pipes,” Int. J. Heat Mass Tran., vol. 132, pp. 280–287, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.022.
  • Y. Akkuş, “Modeling of evaporation from nanoporous membranes using molecular dynamics simulation,” Isi Bilim Tek. Derg., vol. 39, pp. 91–99, 2019.
  • F. Heslot, N. Fraysse, and A. M. Cazabat, “Molecular layering in the spreading of wetting liquid drops,” Nature, vol. 338, no. 6217, pp.640, 1989. DOI: 10.1038/338640a0.
  • L. Cheng, P. Fenter, K. L. Nagy, M. L. Schlegel, and N. C. Sturchio, “Molecular-scale density oscillations in water adjacent to a mica surface,” Phys. Rev. Lett., vol. 87, pp. 156103, 2001. DOI: 10.1103/PhysRevLett.87.156103.
  • S. Yesudasan and S. C. Maroo, “Origin of surface-driven passive liquid flows,” Langmuir, vol. 32, no. 34, pp.8593–8597, 2016. DOI: 10.1021/acs.langmuir.6b02117.
  • J. R. D. Copley and S. W. Lovesey, “The dynamic properties of monatomic liquids,” Rep. Prog. Phys., vol. 38, no. 4, pp.461, 1975. DOI: 10.1088/0034-4885/38/4/001.
  • T. Q. Vo, M. Barisik, and B. H. Kim, “Near-surface viscosity effects on capillary rise of water in nanotubes,” Phys. Rev. E, vol. 92, no. 5, pp.053009, 2015. DOI: 10.1103/PhysRevE.92.053009.
  • Y. Pao, “Application of kinetic theory to the problem of evaporation and condensation,” Phys. Fluids, vol. 14, no. 2, pp.306–312, 1971. DOI: 10.1063/1.1693429.
  • A. Frezzotti, P. Grosfils, and S. Toxvaerd, “Evidence of an inverted temperature gradient during evaporation/condensation of a lennard-jones fluid,” Phys. Fluids, vol. 15, no. 10, pp.2837–2842, 2003. DOI: 10.1063/1.1601221.
  • T. Ytrehus, “Molecular-flow effects in evaporation and condensation at interfaces,” Multiphase Sci. Technol., vol. 9, no. 3, 1997. DOI: 10.1615/MultScienTechn.v9.i3.10.
  • K. Bellur. A New Technique to Determine Accommodation Coefficients of Cryogenic Propellants. PhD thesis, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.