228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal Performance Testing of a Solar Water Heating System Using Core-Shell Structured Nanofluids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 218-241 | Received 07 Jul 2022, Accepted 06 Nov 2022, Published online: 20 Nov 2022

References

  • A. Ahmed, H. Baig, S. Sundaram, and T. K. Mallick, “Use of nanofluids in solar PV/thermal systems,” Int. J. Photoenergy, vol. 2019, pp. 1–17, Jun. 2019. DOI: 10.1155/2019/8039129.
  • E. Bellos, Z. Said, and C. Tzivanidis, “The use of nanofluids in solar concentrating technologies: a comprehensive review,” J. Clean. Prod, vol. 196, pp. 84–99, Sep. 2018. DOI: 10.1016/j.jclepro.2018.06.048.
  • P. K. Nagarajan, J. Subramani, S. Suyambazhahan, and R. Sathyamurthy, “Nanofluids for solar collector applications: a review,” Energy Procedia, vol. 61, pp. 2416–2434, 2014. DOI:10.1016/j.egypro.2014.12.017.
  • A. S. Abdelrazik, F. Al-Sulaiman, R. Saidur, and R. Ben-Mansour, “A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) Solar Systems,” Renew. Sustain. Energy Rev, vol. 95, pp. 110–129, Nov. 2018. DOI: 10.1016/j.rser.2018.07.013.
  • M. N. Pantzali, A. G. Kanaris, K. D. Antoniadis, A. A. Mouza, and S. V. Paras, “Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface,” Int. J. Heat Fluid Flow, vol. 30, no. 4, pp. 691–699, Aug. 2009. DOI: 10.1016/j.ijheatfluidflow.2009.02.005.
  • L. Das, et al., “Hydrothermal performance improvement of an inserted double pipe heat exchanger with Ionanofluid,” Case Stud. Therm. Eng, vol. 28, no. August, pp. 101533, 2021. DOI: 10.1016/j.csite.2021.101533.
  • A. Sözen, et al. “Upgrading of the performance of an air-to-air heat exchanger using graphene/water nanofluid,” Int. J. Thermophys, vol. 42, no, 3, 2021. DOI: 10.1007/s10765-020-02790-w.
  • M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: a critical review,” Renewable Sustainable Energy Rev., vol. 103, pp. 556–592, Apr. 2019. DOI: 10.1016/j.rser.2018.12.057.
  • S. Koçak Soylu, İ. Atmaca, M. Asiltürk, and A. Doğan, “Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids,” Appl. Therm. Eng, vol. 157, pp. 113743, Jul. 2019. DOI: 10.1016/j.applthermaleng.2019.113743.
  • S. Koçak Soylu, Z. Yeşil Acar, M. Asiltürk, and İ. Atmaca, “Effects of doping on the thermophysical properties of Ag and Cu doped TiO2 nanoparticles and their nanofluids,” J. Mol. Liq, vol. 368, pp. 120615, Dec. 2022. DOI: 10.1016/j.molliq.2022.120615.
  • O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf, vol. 57, no. 2, pp. 582–594, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.037.
  • F. Hossain, M. R. Karim, and A. A. Bhuiyan, “A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) Solar Systems,” Renew. Energy, vol. 188, pp. 114–131, 2022. DOI:10.1016/j.renene.2022.01.116.
  • N. Abbas, et al. “Applications of nanofluids in photovoltaic thermal systems: a review of recent advances,” Phys. A Stat. Mech. Its Appl, vol. 536, pp. 122513, 2019. DOI: 10.1016/j.physa.2019.122513.
  • A. H. A. Al-Waeli, et al., “An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system,” Energy Convers. Manag, vol. 142, pp. 547–558, Jun. 2017. DOI: 10.1016/j.enconman.2017.03.076.
  • J. J. Michael and S. Iniyan, “Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide – water nanofluid,” Sol. Energy, vol. 119, pp. 439–451, Sep. 2015. DOI: 10.1016/j.solener.2015.06.028.
  • F. Jamil, H. M. Ali, and M. M. Janjua, “MXene based advanced materials for thermal energy storage: a recent review,” J. Energy Storage, vol. 35, no. January, pp. 102322, 2021. DOI: 10.1016/j.est.2021.102322.
  • D. Shin and D. Banerjee, “Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications,” Int. J. Heat Mass Transf, vol. 54, no. 5–6, pp. 1064–1070, Feb. 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.11.017.
  • O. Bait and M. Si-Ameur, “Enhanced heat and mass transfer in solar stills using nanofluids: a review,” Solar Energy, vol. 170, pp. 694–722, Aug. 2018. DOI: 10.1016/j.solener.2018.06.020.
  • K. Y. Leong, et al., “An overview on current application of nanofluids in solar thermal collector and its challenges,” Renew. Sustain. Energy Rev, vol. 53, pp. 1092–1105, 2016. DOI:10.1016/j.rser.2015.09.060.
  • A. A. Minea and W. M. El-Maghlany, “Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison,” Renew. Energy, vol. 120, pp. 350–364, May. 2018. DOI: 10.1016/j.renene.2017.12.093.
  • M. H. Yazdi, et al., “Thermal performance of nanofluid flow inside evacuated tube solar collector,” Int. J. Heat Technol, vol. 39, no. 4, pp. 1262–1270, 2021. DOI: 10.18280/ijht.390424.
  • M. A. Sharafeldin and G. Gróf, “Efficiency of evacuated tube solar collector using WO3/Water nanofluid,” Renew. Energy, vol. 134, pp. 453–460, 2019. DOI:10.1016/j.renene.2018.11.010.
  • Y. Y. Gan, et al., “Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector,” Appl. Therm. Eng, vol. 145, no. September, pp. 155–164, 2018. DOI: 10.1016/j.applthermaleng.2018.09.012.
  • G. J. O’Keeffe, S. L. Mitchell, T. G. Myers, and V. Cregan, “Modelling the efficiency of a nanofluid-based direct absorption parabolic trough solar collector,” Sol. Energy, vol. 159, no. September, pp. 44–54, 2017. DOI: 10.1016/j.solener.2017.10.066.
  • G. J. O’Keeffe, S. L. Mitchell, T. G. Myers, and V. Cregan, “Time-dependent modelling of nanofluid-based direct absorption parabolic trough solar collectors,” Sol. Energy, vol. 174, no. September, pp. 73–82, 2018. DOI: 10.1016/j.solener.2018.08.073.
  • G. Vijayan and K. Rajasekaran, “Performance evaluation of nanofluid on parabolic trough solar collector,” Therm. Sci, vol. 24, no. 2 Part A, pp. 853–864, 2020. DOI: 10.2298/TSCI180509059G.
  • W. Kang, Y. Shin, and H. Cho, “Economic analysis of flat-plate and U-tube solar collectors using an Al2O3 nanofluid,” Energies, vol. 10, no. 11, pp. 1911, Nov. 2017. DOI: 10.3390/en10111911.
  • G. Paul, T. Pal, and I. Manna, “Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique,” J. Colloid Interface Sci, vol. 349, no. 1, pp. 434–437, 2010. DOI: 10.1016/j.jcis.2010.05.086.
  • P. Mélinon, et al., “Engineered inorganic core/shell nanoparticles,” Phys. Rep, vol. 543, no. 3, pp. 163–197, Oct. 2014. doi:10.1016/j.physrep.2014.05.003.
  • V. K. Pustovalov, “Modeling and analysis of optical properties of nanoparticles and nanofluids for effective absorption of solar radiation and their heating,” SN Appl. Sci, vol. 1, no. 4, pp. 1–25, 2019. DOI: 10.1007/s42452-019-0370-2.
  • H. Li, Y. He, Z. Liu, Y. Huang, and B. Jiang, “Synchronous steam generation and heat collection in a broadband Ag@TiO2 core–shell nanoparticle-based receiver,” Appl. Therm. Eng, vol. 121, pp. 617–627, 2017. DOI:10.1016/j.applthermaleng.2017.04.102.
  • M. Chen, Y. He, X. Wang, and Y. Hu, “Complementary enhanced solar thermal conversion performance of core-shell nanoparticles,” Appl. Energy, vol. 211, no. November, pp. 735–742, 2017. DOI: 10.1016/j.apenergy.2017.11.087.
  • S. Cingarapu, D. Singh, E. V. Timofeeva, and M. R. Moravek, “Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage,” Int. J. Energy Res, vol. 38, no. 1, pp. 51–59, Jan. 2014. DOI: 10.1002/er.3041.
  • S. Khashan, et al., “Photo-thermal characteristics of water-based Fe 3O 4@SiO 2 nanofluid for solar-thermal applications,” Mater. Res. Express, vol. 4, no. 5, pp. 055701, 2017. DOI: 10.1088/2053-1591/aa6c15.
  • N. Ozmen, et al., “Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity,” Environ. Sci. Pollut. Res, vol. 25, no. 29, pp. 29493–29504, Oct. 2018. doi:10.1007/s11356-018-2942-x.
  • I. Martínez-Mera, M. E. Espinosa-Pesqueira, R. Pérez-Hernández, and J. Arenas-Alatorre, “Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature,” Mater. Lett, vol. 61, no. 23–24, pp. 4447–4451, Sep. 2007. DOI: 10.1016/j.matlet.2007.02.018.
  • Z. Y. Acar and M. Asiltürk, “An investigation on the influence of hydrolysis ratio and base type on the characterization of synthesised nano-TiO2 by using sol–gel method,” J. Nanoparticle Res, vol. 24, no. 8, pp. 162, Aug. 2022. DOI: 10.1007/s11051-022-05543-y.
  • W. Muhammad, N. Ullah, M. Haroon, and B. H. Abbasi, “Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L,” RSC Adv, vol. 9, no. 51, pp. 29541–29548, 2019. DOI: 10.1039/C9RA04424H.
  • N. Majoul, S. Aouida, and B. Bessaïs, “Progress of porous silicon APTES-functionalization by FTIR investigations,” Appl. Surf. Sci, vol. 331, pp. 388–391, Mar. 2015. DOI: 10.1016/j.apsusc.2015.01.107.
  • Y. Li, et al., “Preparation and characterization of APTES modified magnetic MMT capable of using as anisotropic nanoparticles,” Appl. Surf. Sci, vol. 447, pp. 393–400, Jul. 2018. DOI: 10.1016/j.apsusc.2018.03.230.
  • ASTM International, ASTM E2490-09: Standard Guide For Measurement Of Particle Size Distribution Of Nanomaterials In Suspension By Photon Correlation Spectroscopy (PCS), vol. 14.02, no. E56.02, pp. 1–15, 2015. doi:10.1520/E2490-09R21.
  • V. A. Hackley and J. D. Clogston, “Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering.” In: McNeil, S. (ed.), Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology (Clifton, N.J.), Vol. 697. Humana Press. pp. 35–52, 2011. doi10.1007/978-1-60327-198-1_4.
  • L. Jitkang, Y. S. Pin, C. H. Xin, and L. S. Chun, “Characterization of magnetic nanoparticle by dynamic light scattering,” Nanoscale Res. Lett, vol. 8, 1 pp.308–381, 2013. doi:10.1186/1556-276X-8-308.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf, vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • J. A. Duffie, W. A. Beckman, and J. McGowan, “Solar Engineering of Thermal Processes,” Am. J. Phys, vol. 53, no. 4, pp. 382, 1985. DOI: 10.1119/1.14178.
  • J. P. Holman, Experimental Methods for Engineers. New York, NY: McGraw-Hill’s. pp. 616, 1994. DOI: 10.1016/0894-1777(94)90118-X.
  • S. P. Jang and S. U. S. Choi, “Cooling performance of a microchannel heat sink with nanofluids,” Appl. Therm. Eng, vol. 26, no. 17–18, pp. 2457–2463, 2006. DOI: 10.1016/j.applthermaleng.2006.02.036.
  • V. Iranidokht, S. Hamian, N. Mohammadi, and M. B. Shafii, “Thermal conductivity of mixed nanofluids under controlled pH conditions,” Int. J. Therm. Sci, vol. 74, pp. 63–71, 2013. DOI:10.1016/j.ijthermalsci.2013.07.008.
  • M. Kole and T. K. Dey, “Thermal conductivity and viscosity of Al 2 O 3 nanofluid based on car engine coolant,” J. Phys. D. Appl. Phys, vol. 43, no. 31, pp. 315501, 2010. DOI: 10.1088/0022-3727/43/31/315501.
  • G. Huminic and A. Huminic, “Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube,” Int. Commun. Heat Mass Transf, vol. 44, pp. 52–57, 2013. DOI:10.1016/j.icheatmasstransfer.2013.03.003.
  • A. Khan, et al., “Chemically reactive nanofluid flow past a thin moving needle with viscous dissipation, magnetic effects and hall current,” PLoS One, vol. 16, no. 4 April, pp. 1–18, 2021. DOI: 10.1371/journal.pone.0249264.
  • F. P. Incropera, et al., Fundamentals of Heat and Mass Transfer, 6th ed, New York: John Wiley & Sons, 2007. DOI: 10.1073/pnas.0703993104.
  • T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors,” Renew. Energy, vol. 39, no. 1, pp. 293–298, Mar. 2012. DOI: 10.1016/j.renene.2011.08.056.
  • A. Zamzamian, M. KeyanpourRad, M. KianiNeyestani, and M. T. Jamal-Abad, “An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors,” Renew. Energy, vol. 71, pp. 658–664, Nov. 2014. DOI: 10.1016/j.renene.2014.06.003.
  • S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Performance augmentation in flat plate solar collector using MgO/water nanofluid,” Energy Convers. Manag, vol. 124, pp. 607–617, Sep. 2016. DOI: 10.1016/j.enconman.2016.07.007.
  • T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors,” Exp. Therm. Fluid Sci, vol. 39, pp. 207–212, May. 2012. DOI: 10.1016/j.expthermflusci.2012.01.025.
  • S. Salavati Meibodi, A. Kianifar, H. Niazmand, O. Mahian, and S. Wongwises, “Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG-water nanofluids,” Int. Commun. Heat Mass Transf, vol. 65, pp. 71–75, Jul. 2015. DOI: 10.1016/j.icheatmasstransfer.2015.02.011.
  • F. Kiliç, T. Menlik, and A. Sözen, “Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector,” Sol. Energy, vol. 164, pp. 101–108, Apr. 2018. DOI: 10.1016/j.solener.2018.02.002.
  • Q. He, S. Zeng, and S. Wang, “Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids,” Appl. Therm. Eng, vol. 88, pp. 165–171, Sep. 2014. DOI: 10.1016/j.applthermaleng.2014.09.053.
  • J. J. Michael and S. Iniyan, “Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations,” Energy Convers. Manag, vol. 95, pp. 160–169, May. 2015. DOI: 10.1016/j.enconman.2015.02.017.
  • D. Anin Vincely and E. Natarajan, “Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation,” Energy Convers. Manag, vol. 117, pp. 1–11, Jun. 2016. DOI: 10.1016/j.enconman.2016.03.015.
  • Z. Said, R. Saidur, M. A. Sabiha, A. Hepbasli, and N. A. Rahim, “Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid,” J. Clean. Prod, vol. 112, pp. 3915–3926, Jan. 2016. DOI: 10.1016/j.jclepro.2015.07.115.
  • Z. Said, R. Saidur, M. A. Sabiha, N. A. Rahim, and M. R. Anisur, “Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector,” Sol. Energy, vol. 115, pp. 757–769, May. 2015. DOI: 10.1016/j.solener.2015.02.037.
  • O. A. Alawi, H. M. Kamar, H. A. Mohammed, A. R. Mallah, and O. A. Hussein, “Energy efficiency of a flat-plate solar collector using thermally treated graphene-based nanofluids: experimental study,” Nanomater. Nanotechnol, vol. 10, pp. 184798042096461, Jan. 2020. DOI: 10.1177/1847980420964618.
  • M. Faizal, R. Saidur, S. Mekhilef, and M. A. Alim, “Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector,” Energy Convers. Manag, vol. 76, pp. 162–168, Dec. 2013. DOI: 10.1016/j.enconman.2013.07.038.
  • Z. Said, et al., “Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant,” J. Clean. Prod, vol. 92, pp. 343–353, Apr. 2015. DOI: 10.1016/j.jclepro.2015.01.007.
  • N. S. Rajput, D. D. B. Shukla, S. K. Sharma, and D. Rajput, “Thermal analysis of mwcnt/distilled water nanofluid on the efficiency of flat plate solar collector,” Int. J. Mech. Eng. Technol, vol. 8, pp. 233–240, 2017.
  • O. A. Alawi, H. Mohamed Kamar, A. R. Mallah, S. N. Kazi, and N. A. C. Sidik, “Thermal efficiency of a flat-plate solar collector filled with pentaethylene glycol-treated graphene nanoplatelets: an experimental analysis,” Sol. Energy, vol. 191, pp. 360–370, Oct. 2019. DOI: 10.1016/j.solener.2019.09.011.
  • A. Ahmadi, D. D. Ganji, and F. Jafarkazemi, “Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors,” Energy Convers. Manag, vol. 126, pp. 1–11, Oct. 2016. DOI: 10.1016/j.enconman.2016.07.061.
  • L. S. Sundar, M. K. Singh, V. Punnaiah, and A. C. M. Sousa, “Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts,” Renew. Energy, vol. 119, pp. 820–833, Apr. 2018. DOI: 10.1016/j.renene.2017.10.056.
  • M. A. Sharafeldin, G. Gróf, and O. Mahian, “Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids,” Energy, vol. 141, pp. 2436–2444, Dec. 2017. DOI: 10.1016/j.energy.2017.11.068.
  • M. Faizal, R. Saidur, S. Mekhilef, A. Hepbasli, and I. M. Mahbubul, “Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2nanofluid,” Clean Technol. Environ. Policy, vol. 17, no. 6, pp. 1457–1473, Aug. 2015. DOI: 10.1007/s10098-014-0870-0.
  • A. L. Owolabi, H. H. Al-Kayiem, and A. T. Baheta, “Performance investigation on a thermal energy storage integrated solar collector system using nanofluid,” Int. J. Energy Res, vol. 41, no. 5, pp. 650–657, Apr. 2017. DOI: 10.1002/er.3657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.