308
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Near-Field Radiative Heat Transfer between $\beta-$GeSe monolayers: An ab initio study

, &
Pages 95-109 | Received 13 Oct 2022, Accepted 05 Mar 2023, Published online: 19 Mar 2023

References

  • D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B, vol. 4, no. 10, pp.3303, 1971. DOI: 10.1103/PhysRevB.4.3303.
  • C. Hargreaves, “Anomalous radiative transfer between closely-spaced bodies,” Phys Lett. A, vol. 30, no. 9, pp.491, 1969. DOI: 10.1016/0375-9601(69)90264-3.
  • Y. De Wilde, et al., “Thermal radiation scanning tunnelling microscopy,” Nature, vol. 444, no. 7120, pp.740, 2006. DOI: 10.1038/nature05265.
  • R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, “Demonstration of strong near-field radiative heat transfer between integrated Nanostructures,” Nano Lett., vol. 14, no. 12, pp.6971, 2014. DOI: 10.1021/nl503236k.
  • A. Kittel, et al., “Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett., vol. 95, no. 22, pp.224301, 2005. DOI: 10.1103/PhysRevLett.95.224301.
  • M. Francoeur, “Nanostructures feel the heat,” Nat. Nanotechnol., vol. 10, no. 3, pp.206, 2015. DOI: 10.1038/nnano.2015.34.
  • E. Rousseau, et al., “Radiative heat transfer at the nanoscale,” Nat. Photon, vol. 3, no. 9, pp.514, 2009. DOI: 10.1038/nphoton.2009.144.
  • E. A. Vinogradov and I. A. Dorofeev, “Thermally stimulated electromagnetic fields of solids,” PHYS-USP, vol. 52, no. 5, pp.425, 2009. DOI: 10.3367/UFNe.0179.200905a.0449.
  • K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Sci. Rep., vol. 57, no. 3–4, pp.59, 2005. DOI: 10.1016/j.surfrep.2004.12.002.
  • O. Ilic, et al., “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B, vol. 85, no. 15, pp.155422, 2012. DOI: 10.1103/PhysRevB.85.155422.
  • V. Karanikolas, S. Suzuki, S. Li, and T. Iwasaki, “Perspective on 2D material polaritons and innovative fabrication techniques,” Appl. Phys. Lett., vol. 120, no. 4, pp.040501, 2022. DOI: 10.1063/5.0074355.
  • X. Liu and Z. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” App. Phys. Lett, vol. 107, no. 14, pp.143114, 2015. DOI: 10.1063/1.4932958.
  • M. A. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Exp, vol. 21, no. 6, pp.7614, 2013. DOI: 10.1364/OE.21.007614.
  • L. Ge, et al., “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv., vol. 8, no. 8, pp.085321, 2018. DOI: 10.1063/1.5049471.
  • B. Yang, D. Pan, X. Guo, H. Hu, and Q. Dai, “Substrate effects on the near-field radiative heat transfer between bi-planar graphene/hBN heterostructures,” Int. J. Therm. Sci, vol. 176, pp. 107493, 2022. DOI: 10.1016/j.ijthermalsci.2022.107493.
  • Y. Hu, H. Li, Y. Zhu, and Y. Yang, “Enhanced near-field radiative heat transport between graphene metasurfaces with symmetric nanopatterns,” Phys. Rev. App, vol. 14, no. 4, pp.044054, 2020. DOI: 10.1103/PhysRevApplied.14.044054.
  • F. Yang and B. Song, “Strong suppression of near-field thermal transport between twisted bilayer graphene near the magic angle,” Today Phys., vol. 24, pp. 100692, 2022. DOI: 10.1016/j.mtphys.2022.100692.
  • M. He, H. Qi, Y. Ren, Y. Zhao, and M. Antezza, “Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method,” Opt. Lett., vol. 45, no. 10, pp.2914, 2020. DOI: 10.1364/OL.392371.
  • S. Landrieux, P. Ben-Abdallah, and R. Messina, “Graphene-based enhancement of near-field radiative-heat-transfer rectification,” App. Phys. Lett, vol. 120, no. 14, pp.143502, 2022. DOI: 10.1063/5.0087089.
  • Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics, vol. 5, no. 9, pp.3739, 2018. DOI: 10.1021/acsphotonics.8b00776.
  • X.-J. Yi, et al., “Near-field radiative heat transfer between black phosphorus and graphene sheet,” Mat. Res. Exp, vol. 6, no. 2, pp.025906, 2018. DOI: 10.1088/2053-1591/aaed94.
  • Z. Wang, et al., “Mechanically tunable near-field radiative heat transfer between monolayer black phosphorus sheets,” Langmuir, vol. 36, no. 40, pp.12038, 2020. DOI: 10.1021/acs.langmuir.0c02449.
  • R. Liu, L. Ge, B. Wu, Z. Cui, and X. Wu, “Near-field radiative heat transfer between topological insulators via surface plasmon polaritons,” iScience, vol. 24, no. 12, pp.103408, 2021. DOI: 10.1016/j.isci.2021.103408.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Physical review letters,” Phys. Rev. Lett., vol. 77, no. 18, pp.3865, 1996. DOI: 10.1103/PhysRevLett.77.3865.
  • J. Zhou and S. Zhang, Npj 2D Mater. Appl, vol. 5, no. 1, 2021. 10.1038/s41699-020-00189-7
  • C.-L. Zhou, X.-H. Wu, Y. Zhang, H.-L. Yi, and D. Novko, “Near-field thermal radiation of germanium selenide single layer,” Phys. Rev. Mater, vol. 5, no. 12, pp.124005, 2021. DOI: 10.1103/PhysRevMaterials.5.124005.
  • S. Lee, et al., “γ-GeSe: a new hexagonal polymorph from group IV–VI Monochalcogenides.” Nano Lett., vol. 21, no. 10, pp. 4305, 2021. DOI: 10.1021/acs.nanolett.1c00714.
  • Y. Xu, et al., “First-principles study on the electronic, optical, and transport properties of monolayer α- and β-GeSe.” Phys. Rev. B, vol. 96, no. 24, pp. 245421, 2017. DOI: 10.1103/PhysRevB.96.245421.
  • Y. Xu, et al., “Novel two-dimensional β-GeSe and β-SnSe semiconductors: anisotropic high carrier mobility and excellent photocatalytic water splitting,” J. Mat. Chem. A, vol. 8, no. 37, pp.19612, 2020. DOI: 10.1039/D0TA06299E.
  • A. Shafique and Y.-H. Shin, “Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds.” Sci. Rep., vol. 7, no. 1, 2017. DOI: 10.1038/s41598-017-00598-7.
  • G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, pp.11169, 1996. DOI: 10.1103/PhysRevB.54.11169.
  • G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, pp.1758, 1999. DOI: 10.1103/PhysRevB.59.1758.
  • G. I. Csonka, et al., “Assessing the performance of recent density functionals for bulk solids,” Phys. Rev. B, vol. 79, no. 15, pp.155107, 2009. DOI: 10.1103/PhysRevB.79.155107.
  • H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, pp.5188, 1976. DOI: 10.1103/PhysRevB.13.5188.
  • K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp.1272, 2011. DOI: 10.1107/S0021889811038970.
  • M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B, vol. 73, no. 4, pp.045112, 2006. DOI: 10.1103/PhysRevB.73.045112.
  • S. Baroni and R. Resta, “Ab initio calculation of the macroscopic dielectric constant in silicon,” Phys. Rev. B, vol. 33, no. 10, pp.7017, 1986. DOI: 10.1103/PhysRevB.33.7017.
  • X. Gonze and C. Lee, “Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory,” Phys. Rev. B, vol. 55, no. 16, pp.10355, 1997. DOI: 10.1103/PhysRevB.55.10355.
  • M. Bokdam, et al., “Role of polar phonons in the photo excited state of metal Halide Perovskites.” Sci. Rep., vol. 6, no. 1, 2016. DOI: 10.1038/srep28618.
  • S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information, New York: Springer Science & Business Media, 2013.
  • L. Matthes, O. Pulci, and F. Bechstedt, “Influence of out-of-plane response on optical properties of two-dimensional materials: first principles approach,” Phys. Rev. B, vol. 94, no. 20, pp.205408, 2016. DOI: 10.1103/PhysRevB.94.205408.
  • A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millimeter Waves, vol. 13, no. 2, pp.161, 1992. DOI: 10.1007/BF01010651.
  • J. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited],” Opt. Mater. Express., vol. 5, no. 10, pp.2313, 2015. DOI: 10.1364/OME.5.002313.
  • Q. Zhong, Z. Dai, J. Liu, Y. Zhao, and S. Meng, “A comprehensive study of phonon thermal transport in 2D IV-VI semiconductors MX (M = Ge, Sn; X = S, Se),” Phys. Lett. A, vol. 384, no. 27, pp.126676, 2020. DOI: 10.1016/j.physleta.2020.126676.
  • A. Nemilentsau, T. Low, and G. Hanson, “Anisotropic 2D materials for tunable hyperbolic plasmonics,” Phys. Rev. Lett., vol. 116, no. 6, pp.066804, 2016. DOI: 10.1103/PhysRevLett.116.066804.
  • W. Choi, et al., “Relaxation oF plasma carriers in graphene: An approach by frequency-dependent optical conductivity measurement,” Adv. Opt. Mater, vol. 6, no. 14, pp.1701402, 2018. DOI: 10.1002/adom.201701402.
  • Q. Fan, J. Yang, J. Cao, and C. Liu, “Thermoelectric performances for both p- and n-type GeSe,” R. Soc. open sci, vol. 8, no. 6, pp.201980, 2021. DOI: 10.1098/rsos.201980.
  • Y. Li. “(Society of Photo-Optical Instrumentation Engineers (SPIE),” 2017.
  • J. Cleary, et al., “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B, vol. 27, no. 4, pp.730, 2010. DOI: 10.1364/JOSAB.27.000730.
  • A. C. Jones, B. T. O’callahan, H. U. Yang, and M. B. Raschke, “The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces,” Prog. Surf. Sci., vol. 88, no. 4, pp.349, 2013. DOI: 10.1016/j.progsurf.2013.07.001.
  • A. Gusso and L. G. Rego, “Heat capacity of suspended phonon cavities,” Phys. Rev. B, vol. 75, no. 4, pp.045320, 2007. DOI: 10.1103/PhysRevB.75.045320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.