73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on Apoptosis of Squamous Cell Carcinoma Using Photothermal Therapy with Partial Injection of Gold Nanoparticles

ORCID Icon &
Pages 135-148 | Received 14 Dec 2022, Accepted 29 May 2023, Published online: 04 Jun 2023

References

  • D. T. Gray, et al., “Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992,” Arch. Dermatol., vol. 133, no. 6, pp.735–740, 1997. DOI: 10.1001/archderm.1997.03890420073008.
  • S. K. T. Que, F. O. Zwald, and C. D. Schmults, “Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging,” J. Am. Acad. Dermatol., vol. 78, no. 2, pp.237–247, 2018. DOI: 10.1016/j.jaad.2017.08.059.
  • D. Donati, S. Brown, K. Eu, Y. Ho, and F. Seow-Choen, “Comparison between midline incision and limited right skin crease incision for right-sided colonic cancers,” Tech. Coloproctol., vol. 6, no. 1, pp.1–4, 2002. DOI: 10.1007/s101510200000.
  • C. Johnson and J. Serpell, “Wound infection after abdominal incision with scalpel or diathermy.” Scalpel, vol. 130, pp. 18–95, 1990.
  • E. D. Verrier, K. J. Bossart, and F. W. Heer, “Reduction of infection rates in abdominal incisions by delayed wound closure techniques,” Am. J. Surg., vol. 138, no. 1, pp.22–28, 1979. DOI: 10.1016/0002-9610(79)90237-X.
  • X. Huang and M. A. El-Sayed, “Plasmonic photo-thermal therapy (PPTT,” Alexandria J. Med., vol. 47, no. 1, pp.1–9, 2011. DOI: 10.1016/j.ajme.2011.01.001.
  • Y. Liu, P. Bhattarai, Z. Dai, and X. Chen, “Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer,” Chem .Soc. Rev., vol. 48, no. 7, pp.2053–2108, 2019. DOI: 10.1039/C8CS00618K.
  • J. T. Robinson, et al., “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc., vol. 133, no. 17, pp.6825–6831, 2011. DOI: 10.1021/ja2010175.
  • L. Aamodt and J. Murphy, “Thermal effects in photothermal spectroscopy and photothermal imaging,” J. Appl. Phys., vol. 54, no. 2, pp.581–591, 1983. DOI: 10.1063/1.332062.
  • Y. Gurevich, G. Logvinov, and I. Lashkevich, “Effective thermal conductivity: application to photothermal experiments for the case of bulk light absorption,” Phys. Status Solidi (B), vol. 241, no. 6, pp.1286–1298, 2004. DOI: 10.1002/pssb.200301993.
  • M. Abbas, Q. Zou, S. Li, and X. Yan, “Self‐assembled peptide‐and protein‐based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater., vol. 29, no. 12, pp.1605021, 2017. DOI: 10.1002/adma.201605021.
  • A. Espinosa, et al., “Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment,” Acs Nano., vol. 10, no. 2, pp.2436–2446, 2016. DOI: 10.1021/acsnano.5b07249.
  • X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res., vol. 1, no. 1, pp.13–28, 2010. DOI: 10.1016/j.jare.2010.02.002.
  • M. Salcman and G. M. Samaras, “Interstitial microwave hyperthermia for brain tumors,” J. Neurooncol., vol. 1, no. 3, pp.225–236, 1983. DOI: 10.1007/BF00165607.
  • C. Ash, M. Dubec, K. Donne, and T. Bashford, “Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods,” Lasers Med. Sci., vol. 32, no. 8, pp.1909–1918, 2017. DOI: 10.1007/s10103-017-2317-4.
  • F. Mustafa and M. Jaafar, “Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy,” Indian J. Phys., vol. 87, no. 3, pp.203–209, 2013. DOI: 10.1007/s12648-012-0213-0.
  • X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc., vol. 128, no. 6, pp.2115–2120, 2006. DOI: 10.1021/ja057254a.
  • J. Zhou, et al., “NIR photothermal therapy using polyaniline nanoparticles,” Biomaterials, vol. 34, no. 37, pp.9584–9592, 2013. DOI: 10.1016/j.biomaterials.2013.08.075.
  • I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas., vol. 23, no. 4, pp.741, 2002. DOI: 10.1088/0967-3334/23/4/312.
  • B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology, vol. 17, no. 20, pp.5167, 2006. DOI: 10.1088/0957-4484/17/20/022.
  • S. Hwang, et al., “Gold nanoparticle-mediated photothermal therapy: current status and future perspective,” Nanomedicine, vol. 9, no. 13, pp.2003–2022, 2014. DOI: 10.2217/nnm.14.147.
  • J.-L. Li and M. Gu, “Gold-nanoparticle-enhanced cancer photothermal therapy,” IEEE J. Sel. Top Quantum. Electron., vol. 16, no. 4, pp.989–996, 2009. DOI: 10.1109/JSTQE.2009.2030340.
  • M. C. Hawes and H. Wheeler, “Factors affecting victorin-induced root cap cell death: temperature and plasmolysist,” Physiol. Plant Pathol., vol. 20, no. 2, pp.137–144, 1982. DOI: 10.1016/0048-4059(82)90079-0.
  • A. Wyllie, J. R. Kerr, and A. Currie, “Cell death: the significance of apoptosis.” Int. Rev. Cytol., vol. 68, pp. 251–306, 1980.
  • X. Zhu, et al., “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun., vol. 7, no. 1, pp.1–10, 2016. DOI: 10.1038/ncomms10437.
  • Y. Liu, et al., “Customized photothermal therapy of subcutaneous orthotopic cancer by multichannel luminescent nanocomposites.” Adv. Mater., vol. 33, no. 30, pp. 2008615, 2021.
  • H. Wang, et al., “A dual‐targeted organic photothermal agent for enhanced photothermal therapy,” Angew. Chem-ger. Edit., vol. 131, no. 4, pp.1069–1073, 2019. DOI: 10.1002/ange.201811273.
  • R. K. Kannadorai and Q. Liu, “Optimization in interstitial plasmonic photothermal therapy for treatment planning,” Med. Phys., vol. 40, no. 10, pp.103301, 2013. DOI: 10.1118/1.4810935.
  • M. Kim, “Numerical study on effective conditions for the induction of apoptotic temperatures for various tumor aspect ratios using a single continuous-wave laser in photothermal therapy using gold nanorods,“ Cancers, vol. 11, no. 6, pp. 764, 2019. DOI: 10.3390/cancers11060764.
  • D. Kim and H. Kim, “Induction of apoptotic temperature in photothermal therapy under various heating conditions in multi-layered skin structure,” Int. J. Mol. Sci., vol. 22, no. 20, pp.11091, 2021. DOI: 10.3390/ijms222011091.
  • L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Standard C. Houston: The University of Texas, MD Anderson Cancer Center, 1992, pp. 4–11.
  • D. Marti, R. N. Aasbjerg, P. E. Andersen, and A. K. Hansen, “Mcmatlab: an open-source, user-friendly, MATLAB-integrated three-dimensional Monte Carlo light transport solver with heat diffusion and tissue damage,” J. Biomed. Opt., vol. 23, no. 12, pp.121622, 2018. DOI: 10.1117/1.JBO.23.12.121622.
  • B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today, vol. 4, no. 3, pp.244–251, 2009. DOI: 10.1016/j.nantod.2009.04.001.
  • L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells.” Int. J. Heat Mass Tran., vol. 54, pp. 5459–5469, 2011.
  • B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations.” Josa a, vol. 11, pp. 1491–1499, 1994.
  • B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” Josa a, vol. 25, no. 11, pp.2693–2703, 2008. DOI: 10.1364/josaa.25.002693.
  • J. Vera and Y. Bayazitoglu, “Gold nanoshell density variation with laser power for induced hyperthermia,” Int. J. Heat Mass Tran., vol. 52, no. 3–4, pp.564–573, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.036.
  • M. M. Jawad, et al., “An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users.” Int. J. Pharmacol., vol. 7, pp. 149–160, 2011.
  • M. P. Çetingül and C. Herman, “A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis,” Phys. Med. Biol., vol. 55, no. 19, pp.5933, 2010. DOI: 10.1088/0031-9155/55/19/020.
  • M. P. Çetingül and C. Herman, “Quantification of the thermal signature of a melanoma lesion.” Int. J. Therm. Sci., vol. 50, pp. 421–431, 2011.
  • C. Holmer, et al., “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt., vol. 12, no. 1, pp.014025, 2007. DOI: 10.1117/1.2564793.
  • S. Jiang, N. Ma, H. Li, and X. Zhang, “Effects of thermal properties and geometrical dimensions on skin burn injuries,” Burns, vol. 28, no. 8, pp.713–717, 2002. DOI: 10.1016/S0305-4179(02)00104-3.
  • B. Prasad, S. Kim, W. Cho, S. Kim, and J. K. Kim, “Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia,” J. Therm. Biol., vol. 74, pp. 281–289, 2018. DOI: 10.1016/j.jtherbio.2018.04.007.
  • E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt., vol. 11, no. 6, pp.064026, 2006. DOI: 10.1117/1.2398928.
  • D. Torvi and J. Dale, “A finite element model of skin subjected to a flash fire,” J. Biomech. Eng., vol. 116, no. 3, pp.250–255, 1994. DOI: 10.1115/1.2895727.
  • S. B. Wilson and V. A. Spence, “A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters,” Phys. Med. Biol., vol. 33, no. 8, pp.895, 1988. DOI: 10.1088/0031-9155/33/8/001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.