110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Investigation into the Roughness and Film Thickness Effects on the Interfacial Thermal Resistance

&
Pages 149-167 | Received 17 Jan 2023, Accepted 11 Jul 2023, Published online: 31 Jul 2023

References

  • H. Julian Goldsmid, “Introduction to thermoelectricity,” Springer Ser. Mater. S., vol. 121, pp. 7–21, 2010.
  • A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects,” Energy Environ. Sci., vol. 2, no. 5, pp.466–479, 2009. DOI: 10.1039/b822664b.
  • H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy 2, 190–212, 2013.
  • H. Julian Goldsmid, “Improving the thermoelectric figure of merit,” Sci. Technol. Adv. Mater., vol. 22, no. 1, pp.280–284, 2021. DOI: 10.1080/14686996.2021.1903816.
  • J. Chen, X. Xu, J. Zhou, and B. Li, “Interfacial thermal resistance: Past, present, and future,” Rev. Modern Phys., vol. 94, pp. 025002, 2022. DOI: 10.1103/RevModPhys.94.025002.
  • W. A. Little, “The transport of heat between dissimilar solids at low temperatures,” Can J. Phys., vol. 37, no. 3, pp.334–349, 1959. DOI: 10.1139/p59-037.
  • L. W. Schmerr Jr., Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach, 2nd, Springer Series in Measurement Science and Technology, 2016. DOI: 10.1007/978-3-319-30463-2
  • E. T. Swartz and R. O. Pohl, “Thermal boundary resistance,” Rev. Mod. Phys., vol. 61, no. 3, pp.605–668, 1989. DOI: 10.1103/RevModPhys.61.605.
  • C. Dames and G. Chen, “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires,” J. Appl. Phys., vol. 95, no. 2, pp.682, 2004. DOI: 10.1063/1.1631734.
  • R. Cheaito, et al., “Thermal boundary conductance accumulation and interfacial phonon transmission: measurements and theory,” Phys. Rev. B, vol. 91, no. 3, pp.035432, 2015. DOI: 10.1103/PhysRevB.91.035432.
  • C. Hua, X. Chen, N. K. Ravichandran, and A. J. Minnich, “Experimental metrology to obtain thermal phonon transmission coefficients at solid interfaces,” Phys. Rev. B, vol. 95, no. 20, pp.205423, 2017. DOI: 10.1103/PhysRevB.95.205423.
  • P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Phys. Rev. B, vol. 82, no. 8, pp.085307, 2010. DOI: 10.1103/PhysRevB.82.085307.
  • J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, OUP Oxford, 2001. DOI: 10.1093/acprof:oso/9780198507796.001.0001
  • Y. Zhang, D. Ma, Y. Zang, X. Wang, and N. Yang, “A modified theoretical Model to accurately account for interfacial roughness in predicting the interfacial thermal conductance,” Front. Energy Res., vol. 6, pp. 48, 2018. DOI: 10.3389/fenrg.2018.00048.
  • Z. Wang, X. Cai, and T. Mao, “Thermal transport in silicon-germanium superlattices at low temperatures,” J. Nanomater, vol. 5862979, pp. 1–9, 2019. DOI: 10.1155/2019/5862979.
  • R. S. Prasher and P. E. Phelan, “A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance,” J. Heat Transfer, vol. 123, no. 1, pp.105–112, 2001. DOI: 10.1115/1.1338138.
  • P. E. Hopkins and P. M. Norris, “Effects of joint vibrational states on thermal boundary conductance,” Nanoscale Microscale Thermophys. Eng., vol. 11, no. 3–4, pp.247–257, 2007. DOI: 10.1080/15567260701715297.
  • N. Mingo and L. Yang, “Phonon transport in nanowires coated with an amorphous material: an atomistic green’s function approach,” Phys. Rev. B, vol. 68, no. 24, pp.245406, 2003. DOI: 10.1103/PhysRevB.68.245406.
  • W. Zhang, T. S. Fisher, and N. Mingo, “The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport,” Numer Heat Transf B, vol. 51, pp. 333–349, 2007. DOI: 10.1080/10407790601144755.
  • J. Dai and Z. Tian, “Rigorous formalism of anharmonic atomistic green’s function for three-dimensional interfaces,” Phys. Rev. B, vol. 101, pp. 041301, 2020. DOI: 10.1103/PhysRevB.101.041301.
  • G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev. B, vol. 57, no. 23, pp.14958–14973, 1998. DOI: 10.1103/PhysRevB.57.14958.
  • B. Davier, et al., “Revisiting thermal conductivity and interface conductance at the nanoscale.” Int. J. Heat Mass Tran., vol. 183, pp. 122056, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122056.
  • J.-P. M. P´eraud and N. G. Hadjiconstantinou, “Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations,” Phys. Rev. B, vol. 84, no. 20, pp.205331, 2011. DOI: 10.1103/PhysRevB.84.205331.
  • J.-P. M. P´eraud and N. G. Hadjiconstantinou, “An alternative approach to efficient simulation of micro/nanoscale phonon transport,” Appl. Phys. Lett., vol. 101, no. 15, pp.153114, 2012. DOI: 10.1063/1.4757607.
  • J.-P. M. P´eraud, C. D. Landon, and N. G. Hadjiconstantinou, “Monte Carlo methods for solving the Boltzmann transport equation,” Ann. Rev. Heat Transf, vol. 17, no. N/A, pp.205–265, 2014. DOI: 10.1615/AnnualRevHeatTransfer.2014007381.
  • D. Singh, J. Y. Murthy, and T. S. Fisher, “Effect of phonon dispersion on thermal conduction across Si/Ge interfaces,” J. Heat Transfer, vol. 133, no. 12, pp.122401, 2011. DOI: 10.1115/1.4004429.
  • P. E. Hopkins, et al. “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning.” Nano Lett., vol. 11, no. 1, pp. 107–112, 2011. DOI: 10.1021/nl102918q.
  • P. G. Klemens, “Thermal conductivity and lattice vibrational modes,” Solid State Phys., vol. 7, pp. l–98, 1958.
  • M. Asen-Palmer, et al., “Thermal conductivity of germanium crystals with different isotopic compositions,” Phys. Rev. B, vol. 56, no. 15, pp.9431–9447, 1997. DOI: 10.1103/PhysRevB.56.9431.
  • https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si and https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Ge
  • http://www.ioffe.ru/SVA/NSM/Semicond/
  • K. Esfarjani and G. Chen, “Heat transport in silicon from first-principles calculations,” Phys. Rev. B, vol. 84, no. 8, pp.085204, 2011. DOI: 10.1103/PhysRevB.84.085204.
  • G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York, NY: Oxford University Press, 2005.
  • S. Hu, C. Y. Zhao, and X. Gu, “Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations,” Chinese Phys. B, vol. 31, no. 5, pp.056301, 2022. DOI: 10.1088/1674-1056/ac4238.
  • X. Ran, Y. Guo, Z. Hu, and M. Wang, “Interfacial phonon transport through Si/Ge multilayer film using monte carlo scheme with spectral transmissivity,” Front. Energy Res., vol. 6, pp. 28, 2018. DOI: 10.3389/fenrg.2018.00028.
  • Z. Liang, K. Sasikumar, and P. Keblinski, “Thermal transport across a substrate–thin-film interface: Effects of film thickness and surface roughness,” Phys. Rev. Lett., vol. 113, no. 6, pp.065901, 2014. DOI: 10.1103/PhysRevLett.113.065901.
  • E. S. Landry and A. J. H. McGaughey, “Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,” Phys. Rev. B, vol. 80, no. 16, pp.165304, 2009. DOI: 10.1103/PhysRevB.80.165304.
  • S. Merabia and K. Termentzidis, “Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics,” Phys. Rev. B, vol. 86, no. 9, pp.094303, 2012. DOI: 10.1103/PhysRevB.86.094303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.