121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effective Thermoelectric Switch of Hollow Weakly-Coupled Molecular Junction Based on Twist Angle Effect with Boron-Doping

, &
Pages 168-181 | Received 28 Apr 2023, Accepted 23 Aug 2023, Published online: 29 Aug 2023

References

  • Y. Wang, et al., “Flexible thermoelectric materials and generators: Challenges and innovations,” Adv. Mater., vol. 31, no. 29, pp.1807916, 2019. DOI: 10.1002/adma.201807916.
  • B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, “Organic thermoelectric materials for energy harvesting and temperature control,” Nature. Reviews. Materials, vol. 1, no. 10, pp.16050, 2016. DOI: 10.1038/natrevmats.2016.50.
  • J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, “Carbon-nanotube-based thermoelectric materials and devices,” Adv. Mater., vol. 30, no. 11, pp.1704386, 2018. DOI: 10.1002/adma.201704386.
  • J.-H. Bahk, H. Fang, K. Yazawa, and A. Shakouri, “Flexible thermoelectric materials and device optimization for wearable energy harvesting,” J. Of Mater. Chem C, vol. 3, no. 40, pp.10362–10374, 2015. DOI: 10.1039/C5TC01644D.
  • L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B, vol. 47, no. 19, pp.12727–12731, 1993. DOI: 10.1103/PhysRevB.47.12727.
  • T. Lehmann, D. A. Ryndyk, and G. Cuniberti. Thermoelectric properties of nanocarbons: Atomistic modeling, physica status solidi (a). 2016. 2133591–602. 10.1002/pssa.201532610
  • D. J. Wesenberg, et al., “Size- and temperature-dependent suppression of phonon thermal conductivity in carbon nanotube thermoelectric films,” Adv Electron Mater, vol. 6, no. 11, pp.2000746, 2020. DOI: 10.1002/aelm.202000746.
  • W. Huang, et al., “Thermoelectric properties of dispersant-free semiconducting single-walled carbon nanotubes sorted by a flavin extraction method,” Chem. Commun., vol. 55, no. 18, pp.2636–2639, 2019. DOI: 10.1039/C8CC10264C.
  • A. D. Avery, et al., “Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties,” Nature Energy, vol. 1, no. 4, pp.16033, 2016. DOI: 10.1038/nenergy.2016.33.
  • T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, vol. 46, pp. 15578–15581, 1992. DOI: 10.1103/PhysRevB.46.15578.
  • Y. Xu, G. Zhang, and B. Li, “Large negative differential resistance in a molecular junction of carbon nanotube and anthracene,” J. Phys. Chem. B, vol. 112, no. 51, pp.16891–16894, 2008. DOI: 10.1021/jp807175n.
  • X. Guo, et al., “Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules,” Science, vol. 311, no. 5759, pp.356–359, 2006. DOI: 10.1126/science.1120986.
  • Y.-R. Chen, L. Zhang, and M. S. Hybertsen, “Theoretical study of trends in conductance for molecular junctions formed with armchair carbon nanotube electrodes,” Phys. Rev. B, vol. 76, no. 11, pp.115408, 2007. DOI: 10.1103/PhysRevB.76.115408.
  • K. Wang, E. Meyhofer, and P. Reddy, “Thermal and thermoelectric properties of molecular junctions,” Adv. Funct. Mater., vol. 30, no. 8, pp.1904534, 2020. DOI: 10.1002/adfm.201904534.
  • Q. Jin, et al. “Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold.” Nat Mater, vol. 18, no. 1, pp. 62–68, 2019. DOI: 10.1038/s41563-018-0217-z.
  • J. Wang, et al., “Thermoelectric performance enhanced by destructive quantum interference in nanoporous carbon nanotube based junctions, physica status solidi (RRL,” Rapid Research Letters, vol. 15, no. 11, pp.2100400, 2021. DOI: 10.1002/pssr.202100400.
  • Y. Liu, et al., “Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices,” ACS. Appl Energy. Mater, vol. 3, no. 3, pp.2556–2564, 2020. DOI: 10.1021/acsaem.9b02243.
  • B. Zhang, et al., “Significantly enhanced thermoelectric performance in intermediate weak-coupling C8-BTBT molecular junctions with p/n-type electrode doping,” J. Of Mater. Chem C, vol. 9, no. 36, pp.12322–12329, 2021. DOI: 10.1039/D1TC02965G.
  • Q. Li, M. Strange, I. Duchemin, D. Donadio, and G. C. Solomon, “A strategy to suppress phonon transport in molecular junctions using π-stacked systems,” J. Phys. Chem. C, vol. 121, no. 13, pp.7175–7182, 2017. DOI: 10.1021/acs.jpcc.7b02005.
  • G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Materials for Sustainable Energy, Co-Published with Macmillan Publishers Ltd, UK: 2010, pp. 101–110. 10.1142/9789814317665_0016
  • C. Jin and G. C. Solomon, “Controlling band alignment in molecular junctions: utilizing two-dimensional transition-metal dichalcogenides as electrodes for thermoelectric devices,” J. Phys. Chem. C, vol. 122, no. 26, pp.14233–14239, 2018. DOI: 10.1021/acs.jpcc.8b00464.
  • J. Dong, B. Zhang, S. Zhang, Y. Sun, and M. Long, “Effects of interface charge-transfer doping on thermoelectric transport properties of black phosphorene-F4TCNQ nanoscale devices,” Appl. Surf. Sci., vol. 579, pp. 152155, 2022. DOI: 10.1016/j.apsusc.2021.152155.
  • D. Wu, et al., “Excellent thermoelectric performance in weak-coupling molecular junctions with electrode doping and electrochemical gating,” Sci China Phys, Mech. & Astron, vol. 63, no. 7, pp.276811, 2020. DOI: 10.1007/s11433-019-1528-y.
  • G. Kiršanskas, Q. Li, K. Flensberg, G. C. Solomon, and M. Leijnse, “Designing π-stacked molecular structures to control heat transport through molecular junctions,” Appl. Phys. Lett., vol. 105, no. 23, pp.233102, 2014. DOI: 10.1063/1.4903340.
  • T. Feng, et al., “Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces,” Phys. Rev. B, vol. 95, no. 19, pp.195202, 2017. DOI: 10.1103/PhysRevB.95.195202.
  • M. Yankowitz, et al., “Tuning superconductivity in twisted bilayer graphene,” Science, vol. 363, no. 6431, pp.1059–1064, 2019. DOI: 10.1126/science.aav1910.
  • V. Perebeinos, J. Tersoff, and P. Avouris, “Phonon-mediated interlayer conductance in twisted graphene bilayers,” Phys. Rev. Lett., vol. 109, no. 23, pp.236604, 2012. DOI: 10.1103/PhysRevLett.109.236604.
  • A. I. Cocemasov, D. L. Nika, and A. A. Balandin, “Phonons in twisted bilayer graphene,” Phys. Rev. B, vol. 88, no. 3, pp.035428, 2013. DOI: 10.1103/PhysRevB.88.035428.
  • D. Wu, et al. “Tunable spin electronic and thermoelectric properties in twisted triangulene π-dimer junctions.” Appl. Phys. Lett., vol. 119, no. 6, pp. 063503, 2021. DOI: 10.1063/5.0056393.
  • S. Deng, X. Cai, Y. Zhang, and L. Li, “Enhanced thermoelectric performance of twisted bilayer graphene nanoribbons junction,” Carbon, vol. 145, pp. 622–628, 2019. DOI: 10.1016/j.carbon.2019.01.089.
  • Y.-J. Zeng, et al., “Significantly enhanced thermoelectric performance of molecular junctions by the twist angle dependent phonon interference effect,” J. Mate. Chem. A., vol. 8, no. 23, pp.11884–11891, 2020. DOI: 10.1039/D0TA02423F.
  • B. Ni, S. B. Sinnott, P. T. Mikulski, and J. A. Harrison, “Compression of carbon nanotubes filled with c 60 , ch 4 , or ne: Predictions from molecular dynamics simulations,” Phys. Rev. Lett., vol. 88, no. 20, pp.205505, 2002. DOI: 10.1103/PhysRevLett.88.205505.
  • Y. Zhou, et al., “Significantly enhanced power factors of p-type carbon nanotube-based composite films by tailoring the peripheral substituents in porphyrin,” ACS Sust. Chem & Eng, vol. 7, no. 13, pp.11832–11840, 2019. DOI: 10.1021/acssuschemeng.9b02337.
  • X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki, “Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube,” Phys. Rev. Lett., vol. 90, no. 18, pp.187401, 2003. DOI: 10.1103/PhysRevLett.90.187401.
  • R. Jones. “Density functional study of carbon clusters C.” I. Struct And Bond. In The Neutral Clusters, The J Of Chem. Phys., vol. 2, no. 16110, pp. 5189–5200, n (2⩽ n⩽ 1999. DOI:10.1063/1.478414.
  • Y. Liu, R. O. Jones, X. Zhao, and Y. Ando, “Carbon species confined inside carbon nanotubes: A density functional study,” Phys. Rev. B, vol. 68, no. 12, pp.125413, 2003. DOI: 10.1103/PhysRevB.68.125413.
  • G.-P. Nikoleli, D. P. Nikolelis, and N. Tzamtzis, “Portable biosensors for the rapid detection of biochemical weapons of terrorism,” in D. Nikolelis. Ed., Portable Chemical Sensors, Springer Netherlands, Netherlands, Dordrecht: 2012, pp. 1–14. 10.1007/978-94-007-2872-1_1
  • M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-functional method for nonequilibrium electron transport,” Phys. Rev. B, vol. 65, no. 16, pp.165401, 2002. DOI: 10.1103/PhysRevB.65.165401.
  • S. Imani Yengejeh, S. A. Kazemi, and A. Öchsner, “Software tools and packages for geometry generation.” in A Primer on the Geometry of Carbon Nanotubes and Their Modifications, S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Eds. Cham: Springer International Publishing, 2015, pp. 59–65.
  • G. B. Abadir, K. Walus, and D. L. Pulfrey, “Basis-set choice for DFT/NEGF simulations of carbon nanotubes,” J Comput Electron, vol. 8, no. 1, pp.1–9, 2009. DOI: 10.1007/s10825-009-0263-5.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp.3865–3868, 1996. DOI: 10.1103/PhysRevLett.77.3865.
  • J. P. Perdew and W. Yue, “Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation,” Phys. Rev. B, vol. 33, no. 12, pp.8800–8802, 1986. DOI: 10.1103/PhysRevB.33.8800.
  • Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region,” Phys. Rev. Lett., vol. 68, no. 16, pp.2512–2515, 1992. DOI: 10.1103/PhysRevLett.68.2512.
  • K. S. Thygesen, “Electron transport through an interacting region: The case of a nonorthogonal basis set,” Phys. Rev. B, vol. 73, no. 3, pp.035309, 2006. DOI: 10.1103/PhysRevB.73.035309.
  • C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, “Direct calculation of the tunneling current,” J. Phys. C: Solid State Phys., vol. 4, no. 8, pp.916–929, 1971. DOI: 10.1088/0022-3719/4/8/018.
  • K. Esfarjani, M. Zebarjadi, and Y. Kawazoe, “Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation,” Phys. Rev. B, vol. 73, no. 8, pp.085406, 2006. DOI: 10.1103/PhysRevB.73.085406.
  • Y. Dubi and M. Di Ventra, “Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions,” Rev Mod Phys, vol. 83, no. 1, pp.131–155, 2011. DOI: 10.1103/RevModPhys.83.131.
  • A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev Mod Phys, vol. 82, no. 3, pp.2257–2298, 2010. DOI: 10.1103/RevModPhys.82.2257.
  • B. Zhang, “Significantly enhanced thermoelectric performance of Van der Waals interface coupling molecular junction with nitrogen-doped graphene nanoribbon electrodes,” Appl. Surf. Sci., vol. 597, pp. 153722, 2022. DOI: 10.1016/j.apsusc.2022.153722.
  • L. F. C. Pereira and D. Donadio, “Divergence of the thermal conductivity in uniaxially strained graphene,” Phys. Rev. B, vol. 87, no. 12, pp.125424, 2013. DOI: 10.1103/PhysRevB.87.125424.
  • L. Lindsay, D. A. Broido, and N. Mingo, “Flexural phonons and thermal transport in graphene,” Phys. Rev. B, vol. 82, no. 11, pp.115427, 2010. DOI: 10.1103/PhysRevB.82.115427.
  • Z.-X. Xie, Y. Zhang, X. Yu, K.-M. Li, and Q. Chen, “Ballistic thermal conductance by phonons through superlattice quantum-waveguides,” J. Appl. Phys., vol. 115, no. 10, pp.104309, 2014. DOI: 10.1063/1.4868595.
  • C.-C. Lin, D. Ginting, R. Lydia, M. H. Lee, and J.-S. Rhyee, “Thermoelectric properties and extremely low lattice thermal conductivity in p-type bismuth tellurides by pb-doping and PbTe precipitation,” J Alloys Compd, vol. 671, pp. 538–544, 2016. DOI: 10.1016/j.jallcom.2016.02.123.
  • M. H. Lee, et al., “Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites,” Appl. Phys. Lett., vol. 102, pp. 223901, 2013. DOI: 10.1063/1.4809677.
  • J. O. Sofo and G. D. Mahan, “Thermoelectric figure of merit of superlattices,” Appl. Phys. Lett., vol. 65, no. 21, pp.2690–2692, 1994. DOI: 10.1063/1.112607.
  • E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, “Quantum confinement in si and ge nanostructures: Theory and experiment,” Appl. Phys Rev., vol. 1, no. 1, pp.011302, 2014. DOI: 10.1063/1.4835095.
  • X.-H. Cao, et al. “Effect of electrophilic substitution and destructive quantum interference on the thermoelectric performance in molecular devices.” J. Phys.: Condens. Matter, vol. 31, no. 34, pp. 345303, 2019. DOI: 10.1088/1361-648X/ab2299.
  • J. Zeng, et al. “Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials.” Nano Lett., vol. 18, no. 12, pp. 7538–7545, 2018. DOI: 10.1021/acs.nanolett.8b03026.
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883–891, 1995. DOI: 10.1016/0008-6223(95)00017-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.