300
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous Determination of Thermal Conductivity and Heat Capacity in Thin Films with Picosecond Transient Thermoreflectance and Picosecond Laser Flash

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 182-194 | Received 30 Mar 2023, Accepted 31 Aug 2023, Published online: 12 Sep 2023

References

  • F. Guillou, et al. “Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect.” Nat. Commun., vol. 9, no, 1, 2018. DOI: 10.1038/s41467-018-05268-4.
  • R. H. Busey, and W. F. Giauque, “The Heat Capacity of Mercury from 15 to 330° K. Thermodynamic Properties of Solid Liquid and Gas. Heat of Fusion and Vaporization1.“ J. Am. Chem. Soc., vol. 75, no. 4, pp. 806–809, 1953.
  • V. K. Pecharsky, K. A. Gschneidner, and D. Fort, “Superheating and other unusual observations regarding the first order phase transition in Dy.” Scr. Mater, vol. 35, no. 7, pp. 843–848, 1996. DOI: 10.1016/1359-6462(96)00225-4.
  • M. M. H. Polash, M. Rasoulianboroujeni, and D. Vashaee, “Magnon and spin transition contribution in heat capacity of ferromagnetic Cr-doped MnTe: Experimental evidence for a paramagnetic spin-caloritronic effect.” Appl. Phys. Lett., vol. 117, no. 4, 2020. DOI: 10.1063/5.0011887.
  • A. Szewczyk, M. Gutowska, and B. Dabrowski, “Specific heat and phase diagram of heavily doped La1-xSrxmno3 (0.45≤x≤1.0),” Phys. Rev. B - Condens. Matter Mater. Phys, vol. 72, no. 22, pp.1–8, 2005. DOI: 10.1103/PhysRevB.72.224429.
  • N. T. H. Kim-Ngan, et al., “Superconductivity in the splat-cooled UMo alloys,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 6, no. 1, pp.015007, 2015. DOI: 10.1088/2043-6262/6/1/015007.
  • J. Kačmarcík et al. “Specific heat of superconducting MgCNi3 single crystals.” J. Phys. Conf. Ser., vol. 150, no. 5, pp. 3–7, 2009. DOI: 10.1088/1742-6596/150/5/052087.
  • D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum., vol. 75, no. 12, pp. 5119–5122, Dec. 2004. DOI: 10.1063/1.1819431.
  • W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity.” J. Appl. Phys., vol. 32, no. 9, pp. 1679–1684, 1961. DOI: 10.1063/1.1728417.
  • T. Baba and A. Ono, “Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements.“ Meas. Sci. Technol., vol. 12, no. 12, pp. 2046, 2001. DOI: 10.1088/0957-0233/12/12/304.
  • N. Taketoshi, T. Baba, and A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique.“ Jpn. J. Appl. Phys., vol. 38, no. 11A, pp. L1268, 1999. DOI: 10.1143/JJAP.38.L1268.
  • N. Taketoshi, T. Baba, and A. Ono, “Development of a thermal diffusivity measurement system for metal thin films using a picosecond thermoreflectance technique.“ Meas. Sci. Technol., vol. 12, no. 12, pp. 2064, 2001. DOI: 10.1088/0957-0233/12/12/306.
  • N. Taketoshi, T. Baba, and A. Ono, “Electrical delay technique in the picosecond thermoreflectance method for thermophysical property measurements of thin films.” Rev. Sci. Instrum., vol. 76, no. 9, Sep 2005. DOI: 10.1063/1.2038628.
  • T. Baba, N. Taketoshi, and T. Yagi, “Development of ultrafast laser flash methods for measuring thermophysical properties of thin films and boundary thermal resistances.” Jpn. J. Appl. Phys., vol. 50, no. 11, pp. 11RA01, Nov 2011. PART 2. DOI: 10.1143/JJAP.50.11RA01.
  • T. Yagi, et al., “Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol. 23, no. 4, pp.1180–1186, 2005. DOI: 10.1116/1.1872014.
  • T. Baba, “Analysis of one-dimensional heat diffusion after light pulse heating by the response function method.” Jpn. J. Appl. Phys., vol. 48, no. 5, pp. 05EB04, May. 2009. DOI: 10.1143/JJAP.48.05EB04.
  • L. Chen, A. M. Limarga, and D. R. Clarke, “A new data reduction method for pulse diffusivity measurements on coated samples,” Comput. Mater. Sci., vol. 50, no. 1, pp. 77–82, Nov. 2010. DOI: 10.1016/j.commatsci.2010.07.009.
  • K. Hatori, N. Taketoshi, T. Baba, and H. Ohta, “Thermoreflectance technique to measure thermal effusivity distribution with high spatial resolution.” Rev. Sci. Instrum., vol. 76, no. 11, pp. 1–7, 2005. DOI: 10.1063/1.2130333.
  • R. Garrelts, A. Marconnet, and X. Xu, “Assessment of thermal properties via nanosecond thermoreflectance method,” Nanoscale Microscale Thermophys. Eng, vol. 19, no. 4, pp.245–257, 2015. DOI: 10.1080/15567265.2015.1078425.
  • J. Jeong, et al. “Picosecond transient thermoreflectance for thermal conductivity characterization.” Nanoscale Microscale Thermophys. Eng, vol. 23, no. 3, 211–221.Jul. 2019. DOI: 10.1080/15567265.2019.1580807.
  • A. J. Schmidt, X. Chen, and G. Chen, “Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.” Rev. Sci. Instrum., vol. 79, no. 11, 2008. DOI: 10.1063/1.3006335
  • A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties.” Rev. Sci. Instrum., vol. 80, no. 9, 2009. DOI: 10.1063/1.3212673
  • J. Yang, C. Maragliano, and A. J. Schmidt, “Thermal property microscopy with frequency domain thermoreflectance.” Rev. Sci. Instrum., vol. 84, no. 10, 2013. DOI: 10.1063/1.4824143
  • J. Liu, et al., “Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.” Rev. Sci. Instrum., vol. 84, no. 3, Mar. 2013. DOI: 10.1063/1.4797479
  • X. Wang, C. D. Liman, N. D. Treat, M. L. Chabinyc, and D. G. Cahill, “Ultralow thermal conductivity of fullerene derivatives.” Phys. Rev. B - Condens. Matter Mater. Phys, vol. 88, no. 7, pp. 1–7, 2013. DOI: 10.1103/PhysRevB.88.075310.
  • J. B. Henderson, J. A. Wiebelt, and M. R. Tant, “A method for the determination of the specific heat and heat of decomposition of composite materials,” Thermochim. Acta, vol. 57, no. 2, pp.161–171, 1982. DOI: 10.1016/0040-6031(82)80057-9.
  • M. J. O’Neill, “Measurement of specific heat functions by differential scanning calorimetry.” Anal. Chem., vol. 38, no. 10, pp. 1331–1336, 1966. DOI: 10.1021/ac60242a011.
  • P. Jiang, B. Huang, and Y. K. Koh, “Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).” Rev. Sci. Instrum, vol. 87, no. 7, 2016. DOI: 10.1063/1.4954969
  • R. B. Wilson, B. A. Apgar, L. W. Martin, and D. G. Cahill, “Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties.” Opt. Express, vol. 20, no. 27, pp. 28829, 2012. DOI: 10.1364/oe.20.028829.
  • I. H. Chowdhury and X. Xu, “Heat transfer in femtosecond laser processing of metal,” Numer. Heat Transf. Part A Appl, vol. 44, no. 3, pp.219–232, 2003. DOI: 10.1080/716100504.
  • L. Guo, S. L. Hodson, T. S. Fisher, and X. Xu, “Heat transfer across metal-dielectric interfaces during ultrafast-laser heating.” J Heat Transfer, vol. 134, no. 4, pp. 1–5, 2012. DOI: 10.1115/1.4005255.
  • Y. S. Touloukian and E. H. Buyco, Thermophysical Properties of Matter - The TPRC Data Series. Volume 4. Specific Heat - Metallic Elements and Alloys, vol. 4, no. Specific Heat. 1971.
  • Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermophysical Properties of Matter - The TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys. 1970.
  • J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim, vol. 9, no. 1, pp.112–147, 1998. DOI: 10.1137/S1052623496303470.
  • C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements: A comprehensive review.” J. Phys. Chem. Ref. Data, vol. 3, 1974. DOI: 10.1063/1.3253100.
  • Y. K. Koh, et al. “Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors.” J. Appl. Phys., vol. 105, no, 5, 2009. DOI: 10.1063/1.3078808.
  • J. S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hu, “Experimental observation of high thermal conductivity in boron arsenide,” Science (80-), vol. 361, no. 6402, pp.575–578, 2018. DOI: 10.1126/science.aat5522.
  • N. P. Gorbachuk and V. R. Sidorko, “Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58-1012 K,” Poroshkovaya Metall, vol. 43, no. 5–6, pp.79–86, 2004. DOI: 10.1023/B:PMMC.0000042464.28118.a3.
  • I. T. Witting, et al. “The thermoelectric properties of bismuth telluride.” Adv. Electron. Mater, vol. 5, no. 6, pp. 1–20, 2019. DOI: 10.1002/aelm.201800904.
  • J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide.” J. Appl. Phys., vol. 53, no. 10, 1982. DOI: 10.1063/1.331665.
  • H. J. Goldsmid and A. E. Bowley, “Thermal conduction in mica along the planes of cleavage,” Nature, vol. 187, no. 4740, pp.864–865, 1960. DOI: 10.1038/187864a0.
  • A. S. Gray and C. Uher, “Thermal conductivity of mica at low temperatures.” J. Mater. Sci., vol. 12, no. 5, pp. 959–965, 1977. DOI: 10.1007/BF00540978.
  • A. Bano, P. Khare, and N. K. Gaur, “Thermal transport properties of bulk and monolayer MoS2: An ab-initio approach,” J. Phys. Conf. Ser., vol. 836, no. 1, pp.012052, 2017. DOI: 10.1088/1742-6596/836/1/012052.
  • V. Varshney, et al., “MD simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior.” Comput. Mater. Sci., vol. 48, no. 1, pp. 101–108, 2010. DOI: 10.1016/j.commatsci.2009.12.009.
  • D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein, and E. D. West, “ENTHALPY and HEAT-CAPACITY STANDARD REFERENCE MATERIAL: SYNTHETIC SAPPHIRE (alpha -Al2O3) from 10 to 2250 K.” J. Res. Natl. Bur. Stand. (United States), vol. 87, no. 2, pp. 159–163, 1982. DOI: 10.6028/jres.087.012.
  • P. Jiang, X. Qian, X. Gu, and R. Yang, “Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance,” Adv. Mater. Weinheim, vol. 29, no. 36, pp.1–7, 2017. DOI: 10.1002/adma.201701068.
  • F. Medjdoub and K. Iniewski. “Gallium Nitride (GaN).” Gallium Nitride (GaN), 2017. DOI: 10.4324/b19387.
  • B. Salce, et al., “Thermal conductivity of pure and Si-doped CuGeO3,” Phys. Lett. Sect. A Gen. At. Solid State Phys, vol. 245, no. 1–2, pp.127–132, 1998. DOI: 10.1016/S0375-9601(98)00347-8.
  • L. Boteler, A. Lelis, M. Berman, and M. Fish, “Thermal conductivity of power semiconductors-when does it matter?,” 2019 IEEE 7th Work. Wide Bandgap Power Devices Appl. WiPDA 2019, pp. 265–271, 2019, DOI: 10.1109/WiPDA46397.2019.8998802.
  • F. James, E. J. F. Shackelford, and W. Alexander, CRC materials science and engineering handbook, CRC press, 2000. DOI: 10.1201/9781420038408.
  • J. Yang, E. Ziade, and A. J. Schmidt, “Uncertainty analysis of thermoreflectance measurements.” Rev. Sci. Instrum, vol. 87, no. 1, 2016. DOI: 10.1063/1.4939671
  • P. Jiang, X. Qian, and R. Yang, “A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method.” Rev. Sci. Instrum, vol. 89, no. 9, 2018. DOI: 10.1063/1.5029971
  • H. Chen, et al., “Thermal conductivity during phase transitions.” Adv. Mater. Weinheim., vol. 31, no. 6, pp. 1–7, 2019. DOI: 10.1002/adma.201806518.
  • M. T. Agne, P. W. Voorhees, and G. J. Snyder, “Phase transformation contributions to heat capacity and impact on thermal diffusivity, thermal conductivity, and thermoelectric performance.” Adv. Mater. Weinheim., vol. 31, no. 35, pp. 1–7, 2019. DOI: 10.1002/adma.201902980.
  • C. R. Raj, S. Suresh, R. R. Bhavsar, and V. K. Singh, “Recent developments in thermo-physical property enhancement and applications of solid solid phase change materials: A review.” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3023–3049, 2020. DOI: 10.1007/s10973-019-08703-w.
  • W. Hua, L. Zhang, and X. Zhang. “Research on passive cooling of electronic chips based on PCM: A review.” J. Mol. Liq., vol. 340, pp. 117183, 2021. DOI: 10.1016/j.molliq.2021.117183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.