54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat Flow Overshooting in Suspended Graphene

Pages 114-128 | Received 04 Apr 2023, Accepted 29 Apr 2024, Published online: 16 May 2024

References

  • A. A. Balandin, et al. “Superior thermal conductivity of single-layer graphene,” Nano. Lett., vol. 8, no. 3, pp. 902–907, 2008. DOI: 10.1021/nl0731872.
  • D. L. Nika and A. A. Balandin, “Phonons and thermal transport in graphene and graphene-based materials,” Rep. Prog. Phys., vol. 80, no. 3, pp. 036502, 2017. DOI: 10.1088/1361-6633/80/3/036502.
  • A. A. Balandin, “Phononics of graphene and related materials,” ACS Nano, vol. 14, no. 5, pp. 5170–5178, 2020. DOI: 10.1021/acsnano.0c02718.
  • A. Cepellotti, et al. “Phonon hydrodynamics in two-dimensional materials,” Nat. Commun., vol. 6, no. 1, pp. 6400, 2015. DOI: 10.1038/ncomms7400.
  • S. Lee, et al. “Hydrodynamic phonon transport in suspended graphene.” Nat. Commun., vol. 6, no. 1, pp. 6290, 2015. DOI: 10.1038/ncomms7290.
  • Z. Ding, et al. “Phonon hydrodynamic heat conduction and Knudsen minimum in graphite.” Nano Lett., Vol. 18, pp. 638–649, 2018.
  • S. Huberman, et al. “Observation of second sound in graphite at temperatures above 100K,” Science, vol. 364, no. 6438, pp. 375–379, 2019. DOI: 10.1126/science.aav3548.
  • Y. Machia, et al. “Observation of Poiseuille flow of phonons in black phosphorus,” Sci. Adv., vol. 4, no. 6, pp. eaat3374, 2018. DOI: 10.1126/sciadv.aat3374.
  • G. Chen, “Non-Fourier phonon heat conduction at the microscale and nanoscale,” Nat. Rev. Phys., vol. 3, no. 8, pp. 555–569, 2021. DOI: 10.1038/s42254-021-00334-1.
  • D. S. Tang and B. Y. Cao, “Superballistic characteristics in transient phonon ballistic-diffusive transport,” Appl. Phys. Lett., vol. 111, no. 11, pp.113109, 2017. DOI: 10.1063/1.5003639.
  • C. Cattaneo, “Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée,” C. R. Acad. Sci, vol. 247, pp. 431, 1958.
  • P. Vernotte, “La véritable équation de la chaleur,” C. R. Acad. Sci, vol. 247, pp. 2103, 1958.
  • R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, no. 2, pp. 766–788, 1966. DOI: 10.1103/PhysRev.148.766.
  • R. A. Guyer and J. A. Krumhansl, “Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals,” Phys. Rev., vol. 148, no. 2, pp. 778–788, 1966. DOI: 10.1103/PhysRev.148.778.
  • D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys, vol. 61, no. 1, pp.41–73, 1989. DOI: 10.1103/RevModPhys.61.41.
  • B. D. Nie and B. Y. Cao, “Reflection and refraction of a thermal wave at an ideal interface,” Int. J. Heat Mass Trans, vol. 116, pp. 314–328, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.043.
  • M. Chemster, “Second sound in solid,” Phys. Rev., vol. 131, no. 5, pp. 2013–2015, 1963. DOI: 10.1103/PhysRev.131.2013.
  • D. S. Tang, Y. C. Hua, B. D. Nie, and B. Y. Cao, “Phonon wave propagation in ballistic-diffusive regime,” J. Appl. Phys., vol. 119, no. 12, pp. 124301, 2016. DOI: 10.1063/1.4944646.
  • D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: Taylor & Francis, 1996.
  • M. Xu and L. Wang, “Dual-phase-lagging heat conduction based on Boltzmann transport equation,” Int. J. Heat Mass Trans, vol. 48, no. 25–26, pp. 5616–5624, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.05.040.
  • M. Xu and L. Wang, “Thermal oscillation and resonance in dual-phase-lagging heat conduction,” Int. J. Heat Mass Trans, vol. 45, no. 5, pp. 1055–1061, 2002. DOI: 10.1016/S0017-9310(01)00199-5.
  • B. Y. Cao and Z. Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, no. 5, pp.53503, 2007. DOI: 10.1063/1.2775215.
  • Z. Y. Guo and Q. W. Hou, “Thermal wave based on the thermomass model,” ASME J. Heat Transfer, vol. 132, no. 7, pp.072403, 2010. DOI: 10.1115/1.4000987.
  • Y. Dong, B. Y. Cao, and Z. Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, no. 6, pp. 063504, 2011. DOI: 10.1063/1.3634113.
  • A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc.: Math. Phys. Sci, vol. 432, pp. 171–194, 1991.
  • S. Bargmann and P. Steinmann, “Modeling and simulation of first and second sound in solids,” Int.J. Solids Struct, vol. 45, no. 24, pp. 6067–6073, 2008. DOI: 10.1016/j.ijsolstr.2008.07.026.
  • S. Bargmann and A. Favata, “Continuum mechanical modeling of laser-pulsed heating in polycrystals: a multi-physics problem of coupling diffusion, mechanics, and thermal waves,” ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech, vol. 94, no. 6, pp. 487–498, 2014. DOI: 10.1002/zamm.201300116.
  • J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system I. Interfacial free energy,” J. Chem. Phys., vol. 28, no. 2, pp. 258–267, 1958. DOI: 10.1063/1.1744102.
  • S. L. Sobolev, “Transport processes and traveling waves in systems with local nonequilibrium,” Sov. Phys. Usp, vol. 34, no. 3, pp. 217–229, 1991. DOI: 10.1070/PU1991v034n03ABEH002348.
  • S. L. Sobolev, “Nonlocal two-temperature model: application to heat transport in metals irradiated by ultrafast laser heating,” Int. J. Heat Mass Trans, vol. 94, pp. 138–144, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.11.075.
  • D. Jou, J. C. Váquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin, Germany: Springer, 2010.
  • V. A. Cimmelli, A. Sellitto, and D. Jou, “Nonlocal effects and second sound in a nonequilibrium steady state,” Phys. Rev. B, vol. 79, no. 1, pp. 014303, 2009. DOI: 10.1103/PhysRevB.79.014303.
  • V. A. Cimmelli, A. Sellitto, and D. Jou, “Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations,” Phys. Rev. B, vol. 81, no. 5, pp. 054301, 2010. DOI: 10.1103/PhysRevB.81.054301.
  • V. A. Cimmelli, A. Sellito, and D. Jou, “Nonlinear evolution and stability of the heat flow in nanosystems: Beyond linear phonon hydrodynamics,” Phys. Rev. B, vol. 82, no. 18, pp. 184302, 2010. DOI: 10.1103/PhysRevB.82.184302.
  • J. A. Sussman and A. Thellung, “Thermal conductivity of perfect dielectric crystals in the absence of Umklapp processes,” Proc. Phys. Soc. London, vol. 81, no. 6, pp. 1122, 1963. DOI: 10.1088/0370-1328/81/6/318.
  • C. C. Ackerman, et al. “Second sound in solid helium.” Phys. Rev. Lett., vol. 16, no. 18, pp. 789, 1966. DOI: 10.1103/PhysRevLett.16.789.
  • Y. Guo and M. Wang, “Phonon hydrodynamics and its applications in nanoscale heat transport,” Phys. Rep. vol. 595, pp. 1–44, 2015. DOI: 10.1016/j.physrep.2015.07.003.
  • B. D. Nie and B. Y. Cao, “Thermal wave in phonon hydrodynamic regime by phonon Monte Carlo simulations,” Nanoscale Microscale Thermophys. Eng., vol. 24, no. 2, pp. 94–122, 2020. DOI: 10.1080/15567265.2020.1755399.
  • M.-Y. Shang, et al. “Heat vortex in hydrodynamic phonon transport of two-dimensional materials,” Phys. Rep, vol. 10, no. 1, pp. 8272, 2020. DOI: 10.1038/s41598-020-65221-8.
  • Y. Guo and M. Wang, “Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures,” Phys. Rev. B, vol. 97, no. 3, pp. 035421, 2018. DOI: 10.1103/PhysRevB.97.035421.
  • L. Sendr, et al. “Derivation of a hydrodynamic heat equation from the phonon Boltzmann equation for general semiconductors,” Phys. Rev. B, vol. 103, no. 14, pp. L140301, 2021. DOI: 10.1103/PhysRevB.103.L140301.
  • A. Sellitto, F. X. Alvarez, and D. Jou, “Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires,” J. Appl. Phys., vol. 109, no. 6, pp. 064317, 2011. DOI: 10.1063/1.3565138.
  • D. Jou, A. Sellitto, and F. X. Alvarez, “Heat waves and phonon–wall collisions in nanowires,” Proc. R. Soc. A, vol. 467, no. 2133, pp. 2520–2533, 2011. DOI: 10.1098/rspa.2010.0645.
  • P. Torres, et al. “Emergence of hydrodynamic heat transport in semiconductors at the nanoscale,” Phys. Rev. Mater., vol. 2, no. 7, pp. 076001, 2018. DOI: 10.1103/PhysRevMaterials.2.076001.
  • M. Calvo-Schwarzwälder, et al. “Effective thermal conductivity of rectangular nanowires based on phonon hydrodynamics,” Int. J. Heat Mass Transfer, vol. 126, pp. 1120–1128, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.096.
  • A. Beardo, et al. “Hydrodynamic heat transport in compact and holey silicon thin films,” Phys. Rev. Appl, vol. 11, no. 3, pp. 034003, 2019. DOI: 10.1103/PhysRevApplied.11.034003.
  • F. X. Alvarez, D. Jou, and A. Sellitto, “Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach,” Appl. Phys. Lett., vol. 97, no. 3, pp. 033103, 2010. DOI: 10.1063/1.3462936.
  • A. Sellitto, V. A. Cimmelli, and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. Heidelberg: Springer, 2016.
  • M. Xu, “Effect of inflow boundary conditions on phonon transport in suspended graphene,” Phys. Lett. A, vol. 428, pp. 127944, 2022. DOI: 10.1016/j.physleta.2022.127944.
  • M. Xu, “Thermal oscillations, second sound and thermal resonance in phonon hydrodynamics,” Proc. R. Soc. A, vol. 477, no. 2247, pp. 20200913, 2021. DOI: 10.1098/rspa.2020.0913.
  • M. A. Al-Nimr and M. K. Alkam, “Overshooting phenomenon in the hyperbolic microscopic heat conduction model,” Int. J.Thermophys, vol. 24, no. 2, pp. 577, 2003. DOI: 10.1023/A:1022988425515.
  • D. Jou and M. Criado-Sancho, “Thermodynamic stability and temperature overshooting in dual-phase-lagging heat transfer,” Phys. Lett. A, vol. 248, no. 2–4, pp. 172, 1998. DOI: 10.1016/S0375-9601(98)00573-8.
  • M. Xu, et al. “Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction,” Inter. J. Therm. Sci., vol. 50, no. 5, pp. 825, 2011. DOI: 10.1016/j.ijthermalsci.2010.12.006.
  • M. Xu, “Overshooting phenomena of heat conduction in suspended graphene,” Phys. Lett. A, vol. 404, no. 1, pp. 127402, 2021. DOI: 10.1016/j.physleta.2021.127402.
  • M. Xu, “Heat flow wave in suspended graphene,” Proc. R. Soc. A, vol. 478, no. 2266, pp. 20220195, 2022. DOI: 10.1098/rspa.2022.0195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.